
Optimizing Communicating Event-Loop Languages
with Truffle

[Work In Progress Paper]

Stefan Marr
∗

Johannes Kepler University Linz, Austria
stefan.marr@jku.at

Hanspeter Mössenböck
Johannes Kepler University Linz, Austria
hanspeter.moessenboeck@jku.at

ABSTRACT
Communicating Event-Loop Languages similar to E and Am-
bientTalk are recently gaining more traction as a subset of
actor languages. With the rise of JavaScript, E’s notion
of vats and non-blocking communication based on promises
entered the mainstream. For implementations, the combi-
nation of dynamic typing, asynchronous message sending,
and promise resolution pose new optimization challenges.

This paper discusses these challenges and presents initial
experiments for a Newspeak implementation based on the
Truffle framework. Our implementation is on average 1.65x
slower than Java on a set of 14 benchmarks. Initial op-
timizations improve the performance of asynchronous mes-
sages and reduce the cost of encapsulation on microbench-
marks by about 2x. Parallel actor benchmarks further show
that the system scales based on the workload characteristics.
Thus, we conclude that Truffle is a promising platform also
for communicating event-loop languages.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Concurrent
programming structures; D.3.4 [Processors]: Optimization

Keywords
Actors, Event-Loops, Concurrency, Optimization, Truffle

1. INTRODUCTION
Communicating event-loop languages such as E [14] and Am-
bientTalk [16] are appealing for application development be-
cause they are free from low-level data races and deadlocks,
and their concurrency model is comparably simple. Com-
municating event loops (CEL) are isolated from each other
so that any form of communication needs to be done ex-
plicitly via message passing instead of implicitly via shared
state. This prevents low-level data races and thereby raises

∗Stefan Marr’s research is funded by Oracle Labs.

Submitted as Work-In-Progress Paper to the AGERE’15 Workshop co-
located with SPLASH’15, Pittsburgh, PA, USA.

the abstraction level of programs. In E, these CELs are
called vats and contain heaps of objects. In this paper, we
simply call them actors. As a consequence of the deadlock-
free design, synchronization is modeled with asynchronous
messages and promises. Consequently, data and synchro-
nization dependencies become explicit to the programmers,
which can avoid hidden race conditions and deadlocks.

Recently, the CEL model got adopted by languages used
predominantly in shared memory settings. JavaScript [5]
add a variation of this model with Web Workers1 and its
support for promises. With this extension, many languages
targeting JavaScript VMs as execution platforms also adopt
the model, e. g., Dart,2 ClojureScript,3 Scala.js,4 and Type-
Script.5 This trend brings the CEL model from a distributed
setting into the realm of shared memory multicore systems
ranging from mobile devices to server applications. Hence,
an efficient utilization of multicore processors becomes more
relevant than distributed messaging performance. For lan-
guage implementers, this brings new optimization challenges
since JavaScript—as language and platform—is dynamically
typed. To our knowledge, existing research on the per-
formance of communicating event-loop languages either re-
stricted itself to simple interpreters as was the case for E and
AmbientTalk, or used static type systems, e. g., JCoBox [15]
used one to optimize message sends. Similarly, languages
or frameworks that follow more closely the Hewitt [6] and
Agha [1] style of actors focused on type systems to improve
performance, e. g., SALSA [4] or Pony.6

This work is an initial exploration of the optimization chal-
lenges for dynamically-typed communicating event-loop lan-
guages for shared-memory multicore systems. We present
SOMNS, an implementation of Newspeak7 [2] based on the
Truffle framework, which executes on top of a JVM. Beside
a brief sketch of Newspeak’s concurrency model, we discuss
the optimization challenges for asynchronous execution, en-
suring isolation between actors, and promise resolution. We
evaluate initial strategies to optimize asynchronous message
sends and argument handling to ensure isolation.

1Web Workers, W3C, May 2012 www.w3.org/TR/workers/
2Dart, Google dartlang.org
3ClojureScript, github.com/clojure/clojurescript/
4Scala.js, Sébastien Doeraene scala-js.org
5TypeScript, Microsoft typescriptlang.org
6Pony, ponylang.org
7Newspeak Programming Language Specification, Gilad
Bracha, ver. 0.095 http://bracha.org/newspeak-spec.pdf

1

www.w3.org/TR/workers/
dartlang.org
github.com/clojure/clojurescript/
scala-js.org
typescriptlang.org
ponylang.org
http://bracha.org/newspeak-spec.pdf


2. NEWSPEAK: A DYNAMIC CONCURRENT
EVENT-LOOP LANGUAGE

For our exploration we chose Newspeak, a dynamically typed
class-based language with actors based on E’s communicat-
ing event-loop model. For concurrency research, it has the
major advantage that it does not have a notion of global or
static state. Instead, state has to be passed explicitly follow-
ing the object capability model [3]. The resulting language is
simple and self-consistent, which avoids many special cases
while retaining the convenience of classes. Nonetheless, it is
similar to widely used object-oriented languages, and thus,
represents a wide range of languages used on the Web. Fur-
thermore, Newspeak also has JavaScript and Dart backends
to run in browsers and on servers. Our implementation,
SOMNS

8 is designed for research on shared-memory concur-
rency with good performance. For instance, in addition to
the CEL model, SOMNS implements Newspeak’s Value ob-
jects, which are deeply immutable and thus can only refer
to deeply immutable objects themselves. Hence, it is safe
to share such values between actors and to allow them to
access value objects synchronously.

A Self-Optimizing Truffle Interpreter. To achieve perfor-
mance within small factors of highly optimizing VMs, we
built on Truffle [12, 18]. This means, SOMNS is an abstract-
syntax-tree (AST) interpreter running on top of a Java Vir-
tual Machine (JVM) with the Graal just-in-time compiler [17].
Truffle and Graal together enables meta-compilation based
on self-optimizing ASTs that rewrite themselves at run time
to optimize for the characteristics of the executed program
and its data. Once a SOMNS method has been executed
often enough, Graal generates native code for it by taking
the AST and applying partial evaluation, aggressive inlining,
as well as classic compiler optimizations. The end result is
the compilation of a SOMNS method to native code. With
this meta-compilation approach, the compiler is indepen-
dent from the implemented language, and has been used for
example for JavaScript, Python, R, and Ruby. The SOMNS

interpreter uses self-optimization to determine types of op-
erations, to optimize the object layout based on types, for
polymorphic inline caches [9] to cache method lookups, and
other performance relevant issues of dynamic languages. De-
tails are discussed in previous work on SOM [12, 13].

3. OPTIMIZATION CHALLENGES
The first major hurdle for performance is SOMNS’ dynami-
cally typed nature, which it shares with JavaScript, Python,
Smalltalk, and others. However, the ideas of speculative op-
timizations and adaptive compilation [8] have been success-
fully applied to eliminate the cost of dynamic typing and
late binding. At times, the results even outperform stati-
cally compiled code, because speculative optimizations can
make optimistic assumptions leading to faster native code.

For this work however, the main focus is on optimization
challenges for event loop languages. Thus, we investigate
the performance challenges revolving around asynchronous
message sends, ensuring isolation between actors, and the
efficient handling of promise resolution.

8SOMNS is a derivate of SOM (Simple Object Machine), a
family of interpreter implementations: som-st.github.io

Asynchronous Execution. Newspeak has four ways to ini-
tiate an asynchronous execution. We distinguish between
sending of asynchronous messages to (i) far references, (ii)
near references, and (iii) promises. Furthermore, we also
consider the execution of the (iv) success or failure handlers,
i. e., callbacks, registered on promises.

For the sending of asynchronous messages, one challenge
is to determine the method to be executed on the receiver
side efficiently. In a distributed setting, we assume that the
lookup is done every time a received message is processed.
Even if one would try to use something like a polymorphic
inline cache [9] in an event loop, we assume the event loop to
result in megamorphic behavior, because all messages and
receiver types are funneled through a single point. Espe-
cially for dynamic languages with complex lookup seman-
tics, the repeated lookups represent a significant cost com-
pared to the cost of method invocation in the sequential
case. Another issue for reaching peak performance is that
information about the calling context is typically lost. For
optimizing dynamic languages, this is however highly rel-
evant to enable optimistic type specializations. Imagine a
simple method adding numbers, depending on the caller a
method might be used exclusively for adding integers, or in
another setting exclusively for adding doubles. When an op-
timizer is able to take such calling-context information into
account, it might be able to produce two separate compila-
tions of the method for the different callers, which then can
be specialized to either integers or doubles avoiding unnec-
essary run time checks and value conversions. For handlers
registered on promises, lookup is no issue because the handle
directly corresponds to the code to be executed. The calling
context however might also be an issue if the same handler
is used in multiple distinct situations.

Ensuring Isolation Between Actors. The second optimiza-
tion challenge is to minimize the overhead of guaranteeing
isolation between actors. Many pragmatic systems forgo iso-
lation because of performance concerns. Examples include
many actor libraries for the JVM [11] including Akka and
Jetlang, as well as JCSP9 and Go,10 which implement com-
municating sequential processes [7]. SOMNS provides this
guarantee because we see it as an essential properties that
make CELs useful from an engineering perspective.

To guarantee isolation, SOMNS needs to ensure that the
different types of objects are handled correctly when being
passed back and forth between actors. Specifically, mutable
objects need to be wrapped in far references so that other
actors have no synchronous access. Far references on the
other hand need to be checked whether they reference an
object that is local to the receiving actor to unwrap them
and guarantee that objects owned by an actor are always
directly accessible. When promises are passed between ac-
tors, SOMNS needs to create a new promise chained to the
original one. This is necessary to ensure that asynchronous
sends to promises that resolve to value objects are executed
on the lexically correct actor. Since value objects do not

9Communicating Sequential Processes for Java (JCSP), Pe-
ter Welch and Neil Brown, access date: 2015-07-05 www.cs.k
ent.ac.uk/projects/ofa/jcsp/

10The Go Programming Language, golang.org

2

som-st.github.io
www.cs.kent.ac.uk/projects/ofa/jcsp/
www.cs.kent.ac.uk/projects/ofa/jcsp/
golang.org


have owners, we bind promises to actors and resolve the new
promise with the original one when passing them between
actors. Similar to asynchronous sends, handlers registered
on promises need to be scheduled on the correct actor, i. e.,
the one that registered them. Thus, promises need to be
handled differently from other objects passed between ac-
tors. For value objects, it needs to be determined efficiently
whether they are deeply immutable, so that they can be
passed safely as direct references.

For message sending, distinguishing between all these dif-
ferent cases has a negative impact on performance. Thus,
finding ways to minimize the number of checks that need
to be performed would reduce the cost of guaranteeing iso-
lation. One conceptual benefit of Newspeak, and with it
SOMNS, is that the message send semantics do not require
copying of objects graphs, which is required, for instance,
for message sending between JavaScript Web Workers.

Efficient Promise Resolution. The optimization of promise
resolution and scheduling of their messages and handlers
is hard because promises can form tree-shaped dependen-
cies, and in this dependency tree, promises from different
actors can be involved. Ideally, resolving a promise would
only require to schedule a single action on the event loop
of the actor owning the promise. In this case, guarantee-
ing isolation and scheduling the corresponding action on the
event loop could be done in code that is straightforwardly
compiled to efficient native code. However, when a promise
pA is resolved with a promise pB , pA’s resolution handlers
are not scheduled immediately, instead, they will only be
triggered once pB has been resolved. Similarly, sending an
asynchronous message to a promise means that the mes-
sage is sent to the value to which the promise is eventually
resolved. In the general case, this means, the resolution pro-
cess has to traverse a tree structure of dependent promises
and schedule all the handlers and messages registered on
these promises on their corresponding event loops. Since the
dependent promises can originate from different actors, we
also need to check at each point whether the resolved value
is properly wrapped to guarantee isolation. Another pitfall
with promise resolution is that a naive implementation could
easily cause a stack overflow in the implementation, which
would cause a crash when resolving long dependency chains
of promises.

4. FIRST OPTIMIZATIONS
The previous section outlined some of the challenges for opti-
mizing SOMNS. This section introduces initial optimizations
that address them.

Send-site Lookup Caching. To avoid the repeated lookup
overhead for asynchronous messages, we rely on SOMNS ex-
ecuting on a shared memory system. This allows us to in-
troduce polymorphic inline caches (PIC) for the send-site
of asynchronous messages. Specifically, we use Truffle’s no-
tion of a RootNode, which essentially correspond to func-
tions. At each send site of an asynchronous message, a root
node is constructed that contains a normal SOMNS syn-
chronous message send operation, which already utilizes a
PIC. This root node is eventually used when processing the

asynchronous message in the event loop. This approach has
two major benefits. On the one hand, we achieve specializa-
tion based on the send site. Ideally, the send is monomor-
phic, as most methods call are, so that is requires only a sim-
ple identity check of the receiver’s class before executing the
cached method. Since we reuse the normal synchronous send
operation at the receiver site, Truffle also does method split-
ting and thus, enable the use of profile information based on
the specific send site. On the other hand, creating the root
node allows us to put these performance critical operations
within the scope of Truffle’s meta-compilation. This means,
when the event loop takes a message for execution, it will
eventually call directly into compiled code from the event
loop and does not perform any generic operations that can-
not be optimized. By constructing the root node that is
send-site specific, but executes and performs the caching
only in the target event loop, this optimization is applicably
to all types of sends in SOMNS. Thus, asynchronous sends
to far references, to direct references, and to promises are
optimized in the same way.

Compared to normal synchronous method invocation, asyn-
chronous messages have the cost of the message queuing and
cannot be inlined into the caller, since this would violate the
semantics. Beside that however, we enable the other clas-
sic compiler optimizations, which can eliminate the cost of
SOMNS’ dynamicity.

Guaranteeing Isolation. As discussed before, guarantee-
ing isolation requires to check at run time whether objects
need to be wrapped in far references or have to be near ref-
erences, make sure that promises are treated correctly to
ensure their desired behavior, or to check whether an object
is a deeply immutable value object.

To efficiently check deep immutability of values, we rely on
Newspeak’s semantics. All objects of classes that include the
Value mixin are supposed to refer only to deeply immutable
objects themselves. Since object constructors can however
execute arbitrary code, we chose to check at the end of a
constructor whether all fields of a value object contain only
value objects themselves. For these checks, we assume that
objects are usually going to be initialized with the same
types of objects for each field. Thus, we enable specialization
of the value check for each field separately, which in the ideal
case means that per field a simple type check or read of a flag
is sufficient to determine whether the constructed object is
a legal value object. Like all of the optimizations discussed
here, this optimization relies on a lexical stability of program
behavior, which for a majority of programs is given or can
be reached by method splitting based on the usage context.
With the correctness check on construction, value objects
can be recognized based on a flag that is set in these objects
without having to traverse the object graph.

To ensure isolation, we optimize asynchronous sends to far
references, handler registration and asynchronous sends to
promises that are already resolved, as well as explicit promise
resolution. For all these cases there is a concrete lexical ele-
ment in the program, and consequently the AST can contain
a node that can specialize itself based on the observed values.
For the asynchronous sends, this means for each argument

3



1.0

1.5

2.0

2.5

B
o

u
n

ce

B
u

b
b

le
S

or
t

D
el

ta
B

lu
e

F
an

n
ku

ch

Js
o

n

M
an

d
el

br
o

t

N
B

o
d

y

P
ag

eR
an

k

P
er

m
u

te

Q
u

ee
n

s

Q
u

ic
kS

or
t

R
ic

h
ar

d
s

S
ie

ve

S
to

ra
g

e

R
u

n
ti

m
e

n
or

m
al

iz
ed

to
Ja

va

Figure 1: Peak performance comparison between
SOMNS and Java on classic sequential benchmarks.
The dotted line is the Java performance based on
the Graal compiler. The dashed line is the geomet-
ric mean over all SOMNS benchmarks.

to the message send, a wrapper node is inserted into the
AST that can specialize itself to one of the various cases
that need to be handled. The assumption is that checking a
guard such as the type of an object and whether sender and
receiver actor are different is a faster operation than having
to process all different cases repeatedly.

For the case that a handler is registered on an already re-
solved promise, or an asynchronous message send is per-
formed, the same optimization applies and the operations
are specialized directly in the AST corresponding to the in-
teraction with the promise. However, for unresolved promises,
this only applies to the arguments of the asynchronous mes-
sage send. For the value to which the promise is resolved, we
cannot use the same specialization. Since promises are nor-
mal objects, they can also be resolved explicitly by calling
the resolve() method on the corresponding resolver object.
For this specific case, the specialization is again applicable
since it can be done as part of the AST element that does
the call to the resolve() method. For the resolution of the
promise that is the result of an asynchronous message send,
this optimization applies as well. As discussed before, for
each asynchronous send, we construct a root node that con-
tains the actual synchronous send, i. e., method invocation
done on the receiver side. We use this root node also to
perform the promise resolution with the return value of the
method invocation. Here, the send-site based specialization
again provides the necessary context for the specialization.

5. PRELIMINARY RESULTS
For each benchmark, we measured 100 consecutive iterations
within the same VM after 150 warmup iterations. The re-
sults represent SOMNS peak performance. The benchmarks
are executed on a system with two quad-core Intel Xeons
E5520 processors at 2.26 GHz with 8 GB of memory and
runs Ubuntu Linux with kernel 3.13, and Java 1.8.0 60.

To give an intuition of SOMNS’ performance, we compare
it with Java. Since Truffle relies on the Graal compiler, we
chose to also use Graal for the Java benchmarks to avoid
cross comparison between compilers. On this benchmark
set, Graal is about 10.9% slower than HotSpot’s C2 com-
piler, which we consider more than acceptable. The results
in fig. 1 show that SOMNS is 1.65x (min. −3%, max. 2.6x)
slower than Java on our set of benchmarks.

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

off the chart

49.9x

1.00

1.25

1.50

1.75

2.00

lookup in cls lookup in
5th supercls

with 10
arguments

with
int or double

S
p

ee
d

u
p

co
m

p
ar

ed
to

u
n

o
p

ti
m

iz
ed

ve
rs

io
n

Figure 2: Speedup of asynchronous send operation
compared to unoptimized SOMNS. Microbench-
marks focus on lookup caching, ensuring of isolation,
and preservation of calling context.

ProducerConsumerBoundedBuffer RadixSort

1
2
3
4
5
6
7
8

1 2 4 6 8 1 2 4 6 8

S
p

ee
d

u
p

o
ve

r
S

in
g

le
C

or
e

Figure 3: Results for two Savina benchmarks [10] to
demonstrate scalability on multiple cores.

The microbenchmarks compare SOMNS with and without
the discussed optimizations. As depicted in fig. 2, the caching
of lookups and the optimizations to reduce the run-time
checks for the argument handling give a speedup of 1.5x
to 2x on these microbenchmarks. The preservation of the
calling context to enable optimizations can give even more
speedup of 49.9x, which unfortunately does not fit onto the
chart. As an initial verification that the parallel execu-
tion leads to speedup, we chose two of the Savina bench-
marks [10] that have potential for parallelism. Figure 3 in-
dicates that an increased number of actors indeed increases
performance.

6. CONCLUSION
This first exploration investigates optimization challenges
for communicating event-loop languages. With SOMNS, a
Newspeak implementation based on Truffle, we show that
they can be implemented efficiently with Truffle. SOMNS

is only 1.65x slower than Java. Furthermore, we show that
send-site caching reduces the lookup overhead, cost of en-
suring isolation, and enables the use of the calling context
for optimization. On microbenchmarks, we see speedups
of 1.5x to 2x, while the use of the calling context for op-
timization can give a speedup of 49.9x. Finally, we also
show that SOMNS can realize parallel speedup on two bench-
marks. While these are only preliminary results, some of
the ideas are applicable to other types of languages. Since
asynchronous message reception rarely leads to monomor-
phic behavior, send-site-based optimizations could also be
beneficial for statically typed languages.

Nonetheless, much work remains to be done. For instance,
we do not yet have a solution of handling complex promise
dependencies efficiently and we did not yet verify the ben-
efit of these optimizations on larger actor programs. We
however hope, SOMNS is an interesting platform for future
research not only of optimization techniques but also for safe
concurrent programming models beyond classic actors.

4



References
[1] G. Agha. ACTORS: A Model of Concurrent Compu-

tation in Distributed Systems. MIT Press, Cambridge,
MA, USA, 1986. ISBN 0-262-01092-5.

[2] G. Bracha, P. von der Ahé, V. Bykov, Y. Kashai,
W. Maddox, and E. Miranda. Modules as Objects in
Newspeak. In ECOOP 2010 – Object-Oriented Pro-
gramming, volume 6183 of Lecture Notes in Computer
Science, pages 405–428. Springer, 2010. ISBN 978-3-
642-14106-5. doi: 10.1007/978-3-642-14107-2 20.

[3] J. B. Dennis and E. C. Van Horn. Programming Se-
mantics for Multiprogrammed Computations. Com-
mun. ACM, 9(3):143–155, Mar. 1966. ISSN 0001-0782.
doi: 10.1145/365230.365252.

[4] T. Desell and C. A. Varela. SALSA Lite: A Hash-
Based Actor Runtime for Efficient Local Concurrency.
In G. Agha, A. Igarashi, N. Kobayashi, H. Masuhara,
S. Matsuoka, E. Shibayama, and K. Taura, editors,
Concurrent Objects and Beyond, volume 8665 of LNCS,
pages 144–166. Springer Berlin Heidelberg, 2014. ISBN
978-3-662-44470-2. doi: 10.1007/978-3-662-44471-9 7.

[5] Ecma International. ECMAScript 2015 Language Spec-
ification. Geneva, 6th edition, June 2015.

[6] C. Hewitt, P. Bishop, and R. Steiger. A Universal Mod-
ular ACTOR Formalism for Artificial Intelligence. In
IJCAI’73: Proceedings of the 3rd International Joint
Conference on Artificial Intelligence, pages 235–245,
San Francisco, CA, USA, 1973. Morgan Kaufmann
Publishers Inc.

[7] C. A. R. Hoare. Communicating sequential processes.
Commun. ACM, 21(8):666–677, 1978. ISSN 0001-0782.
doi: 10.1145/359576.359585.

[8] U. Hölzle, C. Chambers, and D. Ungar. Debug-
ging Optimized Code with Dynamic Deoptimization.
In Proceedings of the ACM SIGPLAN 1992 confer-
ence on Programming language design and implemen-
tation, PLDI ’92, pages 32–43, New York, NY, USA,
1992. ACM. ISBN 0-89791-475-9. doi: 10.1145/
143095.143114.

[9] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
Dynamically-Typed Object-Oriented Languages With
Polymorphic Inline Caches. In ECOOP ’91: European
Conference on Object-Oriented Programming, volume
512 of LNCS, pages 21–38. Springer, 1991. ISBN 3-
540-54262-0. doi: 10.1007/BFb0057013.

[10] S. M. Imam and V. Sarkar. Savina - An Actor Bench-
mark Suite: Enabling Empirical Evaluation of Ac-
tor Libraries. In Proceedings of the 4th International
Workshop on Programming Based on Actors Agents
& Decentralized Control, AGERE! ’14, pages 67–80.
ACM, 2014. ISBN 978-1-4503-2189-1. doi: 10.1145/
2687357.2687368.

[11] R. K. Karmani, A. Shali, and G. Agha. Actor Frame-
works for the JVM Platform: A Comparative Anal-
ysis. In PPPJ ’09: Proceedings of the 7th Interna-
tional Conference on Principles and Practice of Pro-
gramming in Java, pages 11–20, New York, NY, USA,

2009. ACM. ISBN 978-1-60558-598-7. doi: 10.1145/
1596655.1596658.

[12] S. Marr and S. Ducasse. Tracing vs. partial eval-
uation: Comparing meta-compilation approaches for
self-optimizing interpreters. In Proceedings of the
2015 ACM International Conference on Object Ori-
ented Programming Systems Languages &#38; Appli-
cations, OOPSLA ’15. ACM, 2015. ISBN 978-1-4503-
2585-1. doi: 10.1145/2660193.2660194.

[13] S. Marr, T. Pape, and W. De Meuter. Are We There
Yet? Simple Language Implementation Techniques for
the 21st Century. IEEE Software, 31(5):60–67, Septem-
ber 2014. ISSN 0740-7459. doi: 10.1109/MS.2014.98.

[14] M. S. Miller, E. D. Tribble, and J. Shapiro. Concur-
rency Among Strangers: Programming in E as Plan Co-
ordination. In Symposium on Trustworthy Global Com-
puting, volume 3705 of LNCS, pages 195–229. Springer,
April 2005. doi: 10.1007/11580850 12.

[15] J. Schäfer and A. Poetzsch-Heffter. JCoBox: Gen-
eralizing Active Objects to Concurrent Components.
In ECOOP 2010 – Object-Oriented Programming, vol-
ume 6183 of LNCS, pages 275–299, Berlin, 2010.
Springer. ISBN 978-3-642-14106-5. doi: 10.1007/
978-3-642-14107-2 13.

[16] T. Van Cutsem, E. Gonzalez Boix, C. Scholliers,
A. Lombide Carreton, D. Harnie, K. Pinte, and
W. De Meuter. AmbientTalk: programming responsive
mobile peer-to-peer applications with actors. Computer
Languages, Systems & Structures, 40(3–4):112–136,
2014. ISSN 1477-8424. doi: 10.1016/j.cl.2014.05.002.

[17] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler,
G. Duboscq, C. Humer, G. Richards, D. Simon, and
M. Wolczko. One VM to Rule Them All. In Pro-
ceedings of the 2013 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward!’13, pages 187–204.
ACM, 2013. ISBN 978-1-4503-2472-4. doi: 10.1145/
2509578.2509581.

[18] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Si-
mon, and C. Wimmer. Self-optimizing ast interpreters.
In Proceedings of the 8th Dynamic Languages Sympo-
sium, DLS’12, pages 73–82, October 2012. ISBN 978-
1-4503-1564-7. doi: 10.1145/2384577.2384587.

5


	1 Introduction
	2 Newspeak: A Dynamic Concurrent Event-Loop Language
	3 Optimization Challenges
	4 First Optimizations
	5 Preliminary Results
	6 Conclusion

