A Principled Approach towards Debugging
Communicating Event-Loops

Carmen Torres Lopez

Elisa Gonzalez Boix
Vrije Universiteit Brussel
Brussels, Belgium
{ctorresl,egonzale}@vub.be

Abstract

Since the multicore revolution, software systems are more
and more inherently concurrent. Debugging such concurrent
software systems is still hard, but in the recent years new
tools and techniques are being proposed. For such novel
debugging techniques, the main question is how to make
sure that the proposed techniques are sufficiently expressive.

In this paper, we explore a formal foundation that allows
researchers to identify debugging techniques and assess how
complete their features are in the context of message-passing
concurrency.

In particular, we describe a principled approach for defin-
ing the operational semantics of a debugger. Subsequently,
we apply this technique to derive the operational semantics
for a communicating event-loop debugger. We show that
our technique scales for defining the semantics of a wide set
of novel breakpoints recently proposed by systems such as
REME-D and Kémpos. To the best of our knowledge, this
is the first formal semantics for debugging asynchronous
message passing-based concurrency models.

CCS Concepts Software and its engineering — Con-
current programming languages; Software testing and de-

bugging;

Keywords Debugging, Concurrency, Actors, Breakpoint,
Stepping, Operational Semantics

ACM Reference format:

Carmen Torres Lopez, Elisa Gonzalez Boix, Christophe Scholliers,
Stefan Marr, and Hanspeter Mossenbock. 2017. A Principled Ap-
proach towards Debugging Communicating Event-Loops. In Pro-
ceedings of 7th ACM SIGPLAN International Workshop on Program-
ming Based on Actors, Agents, and Decentralized Control, Vancouver,
Canada, October 23, 2017 (AGERE’17), 9 pages.
https://doi.org/]O.l145/3141834,3141839

AGERE’17, October 23, 2017, Vancouver, Canada

© 2017 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of 7th ACM SIGPLAN International Workshop on Programming
Based on Actors, Agents, and Decentralized Control, October 23, 2017, https:
//doi.org/10.1145/3141834.3141839.

Christophe Scholliers
Universiteit Gent
Ghent, Belgium
christophe.scholliers@ugent.be

Stefan Marr

Hanspeter Mossenbock
Johannes Kepler University
Linz, Austria
{stefan.marr,hanspeter.moessenboec
k}@jku.at

1 Introduction

A recent field study on state-of-the-art in debugging [17]
has shown that debugging parallel applications is especially
hard and may require new specialized tools and methods.
This study confirms that one of the main difficulties of fixing
bugs in parallel and concurrent software is the large distance
between the root cause of a bug and the observed failure.
However, traditional debuggers available in modern IDEs
are designed for sequential programs in which statements
execute one after the other possibly modifying some mem-
ory state. This makes them barely useful for concurrent and
parallel programs. Designing a debugger for concurrent and
parallel programs requires rethinking features like break-
point and stepping semantics, inspecting program changes,
etc. This task is challenging because the design space is huge
and includes many parameters such as the non-determinism
of concurrent processes, lack of global clock and the probe
effect [15].

In the past years, several new and promising debug-
ging tools for concurrent programs have emerged including
Causeway [21], REME-D [2], Graft [18], BigDebug [7] and
others [8, 11]. Typically those tools provide domain-specific
debugging features specially designed for the specific char-
acteristics of parallelism and concurrency. For example, the
REME-D debugger explored the design space of breakpoints
and stepping semantics for an online debugger for distributed
actor-based programs [2]. BigDebug, on the other hand, has
proposed the concept of simulated breakpoints for parallel
Big Data programs, which do not stop program execution
but they store all necessary information so that developers
can later replay execution from that point on [18].

Once a novel debugging technique is designed, the ques-
tion is how to validate that the technique or tool is useful
and aids the hard task of finding the root cause of bugs in
concurrent software. A review of recent debugging publi-
cations shows that the usual validation methodology is to
conduct a user study to assess usability of the tool and its de-
bugging features, e.g. in [2, 19]. However, conclusions from
those studies heavily rely on the insights and experience of
programmers involved in the experiments. Sometimes it is
possible to conduct performance benchmarking to assess the
feasibility of the approach (such as in [18]), but this does

https://doi.org/10.1145/3141834.3141839
https://doi.org/10.1145/3141834.3141839
https://doi.org/10.1145/3141834.3141839

AGERE’17, October 23, 2017, Vancouver, Canada

not provide insights on the usability and suitability of the
approach. An alternative approach is to use formal semantics
to prove the correctness or suitability of the proposed de-
bugging features. A formal foundation provides developers
with a principled approach to identify the design space and
assess how complete the set of debugging features is.

In this paper, we design a semantic framework to debug
concurrent programs employing the communicating event-
loop (CEL) model. We start from the operational semantics
for a concurrent programming language model which fea-
tures communicating event-loop concurrency, namely Ambi-
entTalk [22]. We then propose a novel operational semantics
for a debugger for communicating event-loop programs in-
spired by the work of da Silva [4] on defining the relational
semantics of sequential debuggers. Based on this semantics,
we model the breakpoint catalog present in AmbientTalk’s
debugger (i.e. REME-D).

To the best of our knowledge this is the first formal se-
mantics for debugging asynchronous message passing-based
concurrency models. Previous semantic frameworks pro-
posed for debugging have focused on a sequential functional
programming language [1], or message-passing program-
ming languages employing synchronous communication
models [5, 6, 12].

2 Debugging Communicating Event-Loop
Programs

This section briefly recapitulates the basic ideas around
communicating event-loop concurrency, and debugging ap-
proaches for communicating event-loop languages. Finally,
we discuss breakpoint semantics explored in prior online de-
buggers developed for those languages [2, 14], which we will
model in our semantics framework for debugging presented
later in section 4.3.

2.1 Communicating Event-Loop in a Nutshell

The communicating event-loop model is a non-blocking con-
currency actor model proposed by Miller et al. for the E
language [16]. In this model an actor or vat is defined by a
thread of control, a heap of objects, a stack, and a mailbox.
Van Cutsem et al. [23] summarized three main properties
of this model. The first property states that actors execute
sequentially messages from their mailbox, i.e. messages are
processed one by one. An important concept here is the
notion of a turn, which consists in the processing of one
message by the actor until completion. The second property
states that actors have the exclusive access to their mutable
state. This means that objects are owned by actors and only
the owner can access it. The third property states that ac-
tors communicate using asynchronous messages, i.e. an actor
never waits for another actor to finish a computation because
communication between actors is non-blocking. These three
properties makes communicating event-loop languages free
from any kind of low-level data races by design.

C. Torres, E. Gonzalez, C. Scholliers, S. Marr, H. Mossenbdck

Communicating event-loop languages typically support
futures or promises, which are placeholders for the later
return value of an asynchronous message. Their values can
be accessed only using callbacks, which are scheduled as
separate turns on the actor, to avoid exposing the low-level
data race of a promise resolution.

2.2 Debugging Communicating Event-Loop
Languages

The first debugging tool for communicating event-loop lan-
guages is Causeway [21], a message-oriented distributed
debugger for the E language. Causeway is a post-mortem
debugging tool which records a trace of events (i.e. message
sends and receptions) generated during the application’s
execution, which is then loaded by the debugger Ul Cause-
way provides message and process order views to browse
the recorded event history, allowing developers to establish
a partial order of the event history based on the happened
before relation [10]. This relation shows how message sends
and reception events potentially affect each other, helping
developers to identify potential places that caused a bug and
as such, offering a similar functionality as stack traces in
sequential debuggers.

Post-mortem debugging techniques, however, have been
widely criticized since manually inspecting traces becomes
cumbersome and difficult [15]. Many debugging efforts have
thus focused on breakpointed-based online debuggers which
allow programers to control program execution and inspect-
ing program state by performing step-by-step execution.

The first online debugging tool for communicating event-
loop languages is REME-D [2], a reflective epidemic message-
oriented debugger for the AmbientTalk language [22]: a dis-
tributed language for developing mobile peer-to-peer ap-
plications which uses communicating event-loops as con-
currency model. REME-D is a breakpointed-based debugger
which introduced the first catalog of message-oriented break-
points for event-loop programs. It also adapts Causeway’s
event histories based on the happened before relation to a
breakpoint-based debugger by allowing developers to browse
causal links for messages in the current execution context.
REME-D also includes specific features for debugging dis-
tributed systems with changing communication topologies
such as a decentralized debugging session, and open de-
bugging sessions (i.e. the debugger can attach to a running
application and devices can be incorporated dynamically
into a debugging session at run time).

More recently, Kémpos [14] has explored message-
oriented debugging for SOMns [13], a Newspeak implemen-
tation [3], which also uses communicating event-loops as
its concurrency model. Compared to REME-D, it does not
focuses on distributed applications but on concurrent ones
which enables the debugger to provide a consistent global
view of the system easily. Furthermore, SOMns is focused

A Principled Approach towards Debugging ...

on an efficient implementation to minimize interference of
the debugger with the running application.

The work in communicating event-loop debuggers has
been inspired by prior work in debuggers for message pass-
ing communication models like MPI. The most relevant
work related to MPI applicable to communicating event-loop
model is Wismiiller’s message breakpoints [24]. A message
breakpoint stops all receiver processes of the next message
sent by a process. The combination of a message breakpoint
with a traditional breakpoint on the send statements provides
similar semantics to REME-D’s step-into-message-send com-
mand. REME-D’s breakpoint catalog transcends Wismiiller’s
message breakpoints since it also provides breakpoint se-
mantics for future type message passing.

2.3 Breakpoints for Communicating Event-Loop
Languages

REME-D proposed the first catalog of message-oriented
breakpoints for event-loop programs [2]. The catalog in-
cluded three dimensions to define message-oriented break-
points: (1) the place where the execution of the program
should be suspended i.e. sender or receiver, (2) the moment
when the execution of the program is suspended for the pro-
cessing of a message i.e. before or afterwards, and (3) how a
breakpoint can be defined in the program code e.g. using line
numbers, or predicates. That catalog served as inspiration
to Kémpos, whose breakpoints are very similar.

In addition to breakpoints, debuggers usually provide sup-
port for stepping between relevant execution points. We
consider stepping as the transition from one breakpoint to
another one. In each breakpoint location, a possible stepping
operation can be thus performed. In the context of event-
loops, the stepping operations allow developers to reason
and control a program at the level of messages and turns.

As illustration, fig. 1 shows the points of interests for de-
bugging in a communicating event-loop concurrency model.
In particular, it shows the points of interest involved in the
sending of a message from a sender object A to a receiver
object B hosted in another actor.

For regular asynchronous messages, we consider break-
points either on the sender or the receiver end of a message
send (denoted as point 1 and 2 in fig. 1). Both breakpoints
halt before executing the corresponding send or receive op-
eration. From point 1 in the program it is then possible to
step to the message receiver (point 2).

For future messages, i.e. asynchronous messages returning
immediately a future (denoted as object F in fig. 1). These
messages add two more points of interest for debugging: the
point after the value for the future got determined and before
it is sent to resolve the future itself (point 3), and the point
before any callbacks that were registered on the future are
executed, i.e. before future resolution (point 4). These points
are considered as stepping targets as well. In addition, in a

AGERE’17, October 23, 2017, Vancouver, Canada

future msg

Figure 1. Points of interest for debugging messages ex-
changed by actors as communicating event-loops. Object
A sends a message to Object B. The message returns a fu-
ture. When the future is resolved a callback is executed. Both
objects are located in different actors.

turn, we can step to the resolution using the turn’s result
value.

Table 1 summarizes all breakpoints and stepping opera-
tions considered in this paper. For flexibility, we also explore
breakpoints at the beginning and end of each turn, which
allows developers to step between turns on a single actor.

3 Formalization of the Concurrent
Event-Loop Model

Bernstein and Stark were the first ones to develop the oper-
ational semantics for a debugger on top of a programming
language definition [1]. Similar to their approach, our seman-
tic framework to debug communicating event-loop programs
(cf. Section 4) is defined on top of the operational semantics
for the AmbientTalk language defined by Van Cutsem et al.
[22]. We briefly introduce the key aspects of the semantics
which are necessary to follow the contributions of our work.

AmbientTalk’s semantics is based on JCoBox’s seman-
tics [20] which was adapted to formalize language features
common to event-loop based languages such as actors, ob-
jects, blocks, non-blocking functions and asynchronous mes-
sage sending [22]. In a nutshell, AmbientTalk’s semantics
considers that actors evaluate messages as expressions, to
obtain a result value. Reduction rules of AmbientTalk se-
mantics can be applied in a non-deterministic way, and they
correspond to concurrency properties of the communicating
event-loop model.

Figure 2 shows the semantic entities for AmbientTalk se-
mantics AT . A configuration K represents the set of actors
that are executed concurrently in the program. An actor is
represented by an identity t,, a set of objects O, an inbox
queue Q;, that stores the messages to be processed, and an
outbox queue Q,,; that, for each remote actor 1,, stores all
outgoing messages addressed to objects owned by 1,. The
outbox queue Q,,,; actually stores envelopes I. An envelope
is amessage and the set of objects that represent the receivers
of the message. A network in which actors communicate is
identified by 1, and e is the expression the actor is executing.

AGERE’17, October 23, 2017, Vancouver, Canada

C. Torres, E. Gonzalez, C. Scholliers, S. Marr, H. Mossenbdck

Table 1. Overview of breakpoints and stepping operations inspired by REME-D’s breakpoint catalog. Their support in REME-D
and Kémpos debuggers, and our formalization is indicated in the table.

Message Type Breakpoints Stepping Activation Execution Supported
Sender Receiver Before After REME-D Koémpos Semantics
Regular Message Message sender X X X X
Message receiver — step-to-msg-rcvr X X X X X
Future Message Future resolver step-to-future-resolver X X X X
Future resolution step-to-future-resolution, X X X X X X
return-from-turn-
to-future-resolution
Both Begin turn step-to-next-turn X X X X X
End turn step-end-turn X X X X

An object O consists of an identity i,, a tag ¢t and a set of
fields F and methods M. The tag distinguishes between ob-
jects passed by reference o, and passed by copy i.e. isolates 1.
A future is a first-class placeholder for an asynchronously
awaited value and consists of an identity i, a queue for the
pending messages Q;, and a resolved value v. A resolver
object allows to assign a value to its unique paired future
and as such, it consists of an identity ¢, and the identity of
its corresponding future tr. A message m is represented by
an identifier ,,,, a receiver value v, a method name m and
a sequence of arguments values v. References to objects r
consist of an identifier for the actor i, owning the referenced
value and a local component that can be t,, t7 or .. The local
component indicates that the reference refers to either an
object, a resolver or a future. An expression e can include
references r or an asynchronous message send e « m(e) .

a€ACActor = Alg, O, Qin, Qout» tn, €) Actors
Object == O, t, F, M) Objects
t €eTag == o]1I Object tags
Future := T(Lf, Qin, v) Futures
Resolver == R{i, 1) Resolvers
m € Message == M(v, m,0) Messages
Qin €Queue := m Inbox queues
Qoutr € Outbox == 15— 1 Outbox queues
| € Envelope == (m, Op) Envelopes
M C Method := m(x){e} Methods
F CField := f:=v Fields
v €eValue == r|null|e Values
r € Reference == ig.10 | la-tf | ta-tr References
_ Runtime
ecECExpr == ...|leem(e)|r Expressions

0 € O C Object U Future U Resolver
1q € Actorld, 1, € Objectld, i,, € Networkld
Ip € Futureld c Objectld, i, € Resolverld c Objectld

Figure 2. Semantic entities of AT/

4 A Semantic Framework to Debug
Communicating Event-Loop Programs

This section describes the formalization approach of break-
points and stepping operations for communicating event-
loop programs. We first show how to define the operational
semantics of a debugger given the operational semantics of
a CEL programming language. We then use this technique
to extend the semantics for AmbientTalk AT/ described in
the previous section with reduction rules for CEL debug-
ging. We have implemented the presented semantics in PLT-
Redex [9] .

4.1 General Design of the Formalization

This section gives an overview of how to design the formal
semantics of a debugger on top of the operational semantics
of a programming language (called the base language in the
remainder of this paper). The semantics of the debugger is
modeled as a function, which, when applied to a debugging
state (which includes the program being debugged), yields a
new debugging state.

In general the state of the debugger can contain anything
which is needed to denote the semantics of the modeled
breakpoints. In order to model a wide set of CEL breakpoints
as shown in table 1, it is sufficient to have the debugger
state D consisting of five parts, D(B,, B, s, H, K). In what
follows, we explain these five parts which are the core of the
abstract model for a CEL debugger.

In order to keep track of which breakpoints the debugger
has already checked and which breakpoints it should still
check we choose to explicitly keep track of two (breakpoint)
lists. The reason to choose for a list representation is to
make the order in which the breakpoints are checked explicit.
When modeling a non-deterministic debugger it could be
better to have a set representation. The first list (B,) keeps
track of the pending breakpoints, i.e breakpoints which the
debugger still needs to verify for a particular execution state.
The second list (B.) keeps track of which breakpoints have
already been checked by the debugger.

10Our implementation is available http://users.ugent.be/~chscholl/Debug/
AmbientTalk-D.zip

http://users.ugent.be/~chscholl/Debug/AmbientTalk-D.zip
http://users.ugent.be/~chscholl/Debug/AmbientTalk-D.zip

A Principled Approach towards Debugging ...

For each execution state of the program being debugged,
the debugger traverses the list of pending breakpoints and
performs an action. An action is a combination of updating
the debugger state, halting the program execution, stepping
the program execution, and moving the breakpoints from the
list of pending breakpoints to the list of checked breakpoints.

To keep track of which action the debugger is performing,
the debugger state contains an action tag s (representing
step, halt, ...).

When modeling complex breakpoints the current state of
the execution of the debugged program might not provide
sufficient information to determine whether the breakpoint
is applicable or not. In order to be able to model complex
breakpoints the state of the debugger keeps track of the exe-
cution history H of the debugged program. Note that for a
particular debugger the partial history of the execution his-
tory, for instance only tracking messages, may be sufficient
to determine when a breakpoint applies.

The last part of the debugger state corresponds to the
execution state of the program being debugged (K).

4.2 Debugger State for a CEL Debugger

The previous section introduced an abstract model for debug-
ging based on the debugger state . This section shows how
the five parts of the debugging state D are instantiated for
a concrete CEL debugger. Figure 3 summarises the seman-
tic extensions to the base programming language semantics
atf for CEL debugging. In general, the debugger state D
consists of a list of pending breakpoints By, a list of checked
breakpoints B., an action tag s, a list of histories H, and a
program state K.

We define CEL breakpoints as two-tuples consisting of a
breakpoint tag b; and an expression id t,. The breakpoint
tag is used to denote which kind of breakpoint the user has
defined. The expression id uniquely determines the AST
node over which the breakpoint is defined. For example, a
message receiver breakpoint over a message send expression
with id 4; is defined as B(mrb, ;). This also implies that
the underlying programming language semantics needs to
include id tags on the relevant AST nodes.

For the breakpoints defined in this paper it is sufficient
to add id tags on send expressions and messages. To this
end, we have extended the semantic entities presented in
Figure 2 with two modifications (also shown in Figure 3).
First, we added an identifier i,,, in the message entity m to
identify the message. Second, we added an id in the send
expression. We use the id of the send expression as metadata
to identify which message is breakpointed. This identifier is
needed because different breakpoints can be set on the same
message.

For our simple debugger we only consider two action tags:
check and stop. When the debugger is in the check state it
verifies whether there is an applicable breakpoint. When a

AGERE’17, October 23, 2017, Vancouver, Canada

breakpoint applies, the debugger transitions itself to the stop
state and halts execution.

In general, the history H of the debugger is represented by
the different actor configurations K of the program. In our
formalization of the rules we observed that a partial history
consisting of a set of messages m is sufficient.

d € Debugger D(Bp, B¢, s, H, K) Debuggers

b € Breakpoint := B(b;, 1;) Breakpoints
s € Actions == check | stop Action Tags
h € History == m Histories
b; € Breakpoint tag := msb | mrb | fvb Tags
fsb | abb | aab
1; € Breakpointld
m € Message = M1, v, m,) Messages
— Runtime
C = .. i
¢ € E C Expr le —iam(e) Expressions

Figure 3. Semantic extensions for CEL debugging.

4.3 Formalizing CEL Debuggers

In this section we give an overview of the formalization of
the CEL debugger. Figure 4 shows an overview of selected
reduction rules for the CEL debugger. The general form of
the reduction rules of the debugger consists of transitions
between debugger states:

D(Bp, Be,s, H,K) =4 D(B,,B,,s',H’,K’)

Note that the transition relation of the debugger is de-
noted by — 4 while the transition rules of the base language
are defined as —. The evaluation strategy of the debugger
consists of inspecting the list of pending breakpoints B, one-
by-one from left to right. When the actor configuration K is
in a state which triggers the first breakpoint of the list, the
debugger moves to the stopped state. When the breakpoint
is not triggered by the actor configuration, it is moved from
the pending list to the checked list.

The reduction rules of the CEL debugger can be cate-
gorised into four classes:

1. Reduction rules for modeling the connection of the
debugger with the base language.

2. Reduction rules for modeling history independent
breakpoints.

3. Reduction rules for modeling history dependent break-
points.

4. Bookkeeping reduction rules for transitioning the state
of the debugger when the head of the pending break-
points list is not applicable.

In what follows, we describe each of the rules according
to the category it belongs to.

AGERE’17, October 23, 2017, Vancouver, Canada

4.3.1 Connection of the Debugger with the Base
Language

The semantics of the debugger is defined in terms of the

underlying base language. The debugger has the whole actor

configuration as part of its state and calls upon the base

language to take one evaluation step. There is only one rule

involved in connecting the debugger with the base language.

CEL-STEP When the debugger has transitioned into a state
where the pending breakpoints list B, is empty the debug-
ger transitions into a new debugging state where the actor
configuration K is updated by reducing it one step with the
underlying one-step evaluation relation of the base language.
Second, the list of checked breakpoints is reinstalled as the
list of pending breakpoints B, and the list of checked break-
points B, is reset to the empty list.

4.3.2 History-Independent Breakpoints

We differentiate the set of breakpoints into history-
independent and history-dependent breakpoints. The most
simple breakpoints only require the actor configuration K
in order to determine whether they should be triggered
while more bookkeeping is required for the history depen-
dent breakpoints. In the current set of CEL breakpoints we
only identified one history-independent breakpoint (message
sender breakpoint).

TRIGGER-MSB In order to trigger the message sender break-
point there needs to be an actor in the actor configuration
K which is about to send a message. The id of the message
send operator needs to be the same as the identifier ¢; of the
breakpoint corresponding to the message sender B(msb, 1;).
When this is the case, the breakpoint is removed from B, and
is added to checked breakpoints B.. Note that a breakpoint
at the sender side of the message sent reduces the debugger
D to a stop state, just after the message is created and before
adding it to the outbox queue.

4.3.3 History-Dependent Breakpoints

Next to history-independent breakpoints we also model
history-dependent breakpoints. We focus on one such break-
point i.e. message receiver breakpoint, but have observed
that asynchronous before and asynchronous after can be
modeled completely analogous. Moreover, because the se-
mantics of the underlying language translates futures into
regular asynchronous messages the future resolver and fu-
ture resolution breakpoints can also be modeled with similar
reduction rules.

The reason why these breakpoints need to depend on a
history is because there are two distinct execution times in
the evaluation of the interpreter which are important for
determining when to halt execution. For example, for the
message receiver breakpoint the debugger needs to know
whether the breakpoint was active when the message was

C. Torres, E. Gonzalez, C. Scholliers, S. Marr, H. Mossenbdck

sent and later on it needs to remember to halt execution
when the message is actually received. In order to model
this behavior correctly our semantics relies on the message
history.

The semantics of a message receiver breakpoint (MRB)
consist of two reduction rules: SAVE-MRB and TRIGGER-MRB.
The first rule is applicable when a matching asynchronous
message is sent. The debugger then saves this message into
the history and uses this message in order to determine
whether it should halt execution when the message is re-
ceived.

sAvE-MRB This rule represents the reduction of the debugger
D at the sender side of a message, when a message receiver
breakpoint is set. The breakpoint 8(mrb, 1;) will be added
to the checked breakpoints B, the history H is updated with
the sent message. Note that the action tag of the debugger is
not changed and stays check in order to verify whether any
other breakpoint is triggered.

TRIGGER-MRB The message receiver breakpoint is triggered
when a message (with a message receiver breakpoint) is
about to be processed by the receiving actor. In the semantics
this means that the message needs to be the first message
in the inbox of the receiving actor and that the currently
executing expression of the actor has reduced to a value v, i.e.
the actor is idle. Finally, the message to be processed should
be contained in the history. When all these conditions are
met the debugger D changes its action to stop and removes
the message from the message history.

4.3.4 Bookkeeping of Pending Breakpoints

For each of the breakpoint triggering rules there should be
an “anti rule” which instructs the debugger to move the
breakpoint to the list of checked breakpoints. Instead of
listing all these individual rules we compressed them into one
rule NOT-APPLICABLE-BREAKPOINT which should be triggered
when the breakpoint at the head of the list is not applicable.

5 Discussion

Formalizing a debugger as we did in the previous section
provided us with a better understanding of the design space
for breakpoints and stepping operations. This section first
briefly discusses how our approach is applicable to existing
languages and its implications for practical language imple-
mentations. The section then concludes by contrasting the
message breakpoints in previous systems with the design
space opened up by using message histories.

Application to Existing CEL Languages. The presented
formalization of the debugger is designed to be applicable
to a wide range of CEL languages. While we started out
from the semantics of AmbientTalk, it focuses on the key

2The PLT-Redex semantics list all the rules individually.

A Principled Approach towards Debugging ...

(CEL-STEP)

K - K’

AGERE’17, October 23, 2017, Vancouver, Canada

D{(), B¢, check, H,K) —4 D{(B,, (), check, H,K")

(TRIGGER-MSB)

ﬂ<’a9 0, Qin, Qouhln,eD[la'[o y; m(a)]> €K

D(B(msb,1;) - By, B¢, check, H,K) —3 D(Bp, B. - B{msb, 1), stop, H,K)

(SAVE-MRB)

L?{<la, o, Qiru Qouta ln, € [laJo —y; m(a)D €K

D(B{mrb,1;) - By, Bc, check,H,K) —4 D(B,, B, - B{mrb, 1;), check, H - M(ip,, 14.15, m,0),K)

(TRIGGER-MRB)

ﬂ(’a, O,m- Qin’ Qouh ln, U> eK

D(B,, B., check, muH,K) —4 D(B,, B, stop, H,K)

(NOT-APPLICABLE-BREAKPOINT)

not — applicable — breakpoint

D(B(b,1;) - Bp, B, check, H,K) — 4 D(By, B. - B(b;, 1;), check, H, K)

Figure 4. Reduction rules for breakpoints.

concurrency properties shared among CEL languages and
aspects such as the object model can be adapted. Specifically,
the semantics should be compatible to languages such as
E, Newspeak, and even JavaScript with Web Workers.® The
main restriction for JavaScript is that messages are passed as
JSON, which means they all have pass-by-copy semantics.

Furthermore, the debugger semantics requires only mini-
mal adaptations in the interpreter and thus can be applied to
other interpreters straightforwardly. More concretely, the de-
bugger requires that the interpreter (1) annotates AST nodes
with a unique id, (2) has a representation of all the actors in
the configuration and (3) annotates messages with unique
ids. Depending on the interpreter, this may require changes
to parse and the code that handles sending and receiving
messages in order to tag them correctly.

Implications for Practical Systems. The application of
the presented ideas to language systems for practical use is a
higher hurdle. Keeping a message history can require major
changes to an interpreter and might degrade performance
significantly. For these reasons, the changes in SOMns for
Kémpos, nor REME-D do not implement the discussed break-
points based on a history directly. Instead, the chosen set
of breakpoints is realized by passing flags on messages to
indicate a set breakpoint. This is semantically equivalent to
a predicate over the message history with the same proper-
ties but has better performance characteristics. On the other
hand, predicates over the message history are much more
flexible and would allow us to expose the predicate language

3 Web Workers API, MDN web docs, access date: 2017-08-21, https://develo
per.mozilla.org/en-US/docs/Web/API/Webyyorkersa Pl

to the debugger and thereby enable custom and arbitrarily
complex breakpoints or stepping strategies.

Design Space for Breakpoints and Stepping based on
History Predicates. As discussed in the introduction, an im-
portant goal of this work is to better understand the power
of debugging abstractions and the completeness of a set of
proposed features.

In our prior work on REME-D and Kémpos, we reasoned
about the desired breakpoints and stepping operations from
our programmer perspective. This can be illustrated with
the point of interest in an actor system that we considered
as relevant for breakpoints and stepping semantics. For ex-
ample, fig. 1 depicts the interactions necessary to realize a
message send that returns a future. It highlights the four
points relevant for breakpoints and stepping as discussed in
section 2.3.

While these points cover relevant elements for debugging
message exchanges, they are comparably simple. Reconsid-
ering them with the notion of a message history shows that
they correspond to only minimal sequence in the history
and do not include complex interactions between actors.
Furthermore, they are only between two actors. Since our
formalization also includes the actor configuration itself,
breakpoints could also consider interactions between multi-
ple actors that have complex interaction protocols. However,
we did not yet explore the full potential of this approach, nei-
ther with concretely formalized breakpoints nor within our
practical implementations. Nonetheless, with formalizing
the breakpoints we used in REME-D and Kémpos based on
the presented approach, we were able to determine that the

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API

AGERE’17, October 23, 2017, Vancouver, Canada

previously proposed breakpoint catalogues are strictly less
powerful compared with an approach that uses predicates
over message histories.

6 Related Work

To the best our knowledge, this is the first attempt to for-
malize a debugger for the communicating event-loop model.
In this section, we summarize previous work conducted on
formalizing debuggers for other programming paradigms.

The first formal specification for debuggers was proposed
by da Silva [4]. This formalization based on a structural
operational semantics, considers a debugger as a system
which transits from one state to another using an evaluation
history. The debugging operations are realized as predicates
e.g. stepping predicates and path predicates to pause on
expressions of an AST. This idea of a transition system based
on the history has inspired our work.

In the context of distributed applications Ferrari et al. [5]
proposed a debugging calculus for mobile ambients. Similar
to Bernstein and Stark [1] and our approach, they model
a debugger as an extension of the operational semantics
of an underlying programming language. Ferrari et al. [6]
proposes Causal Nets which allows the programmer to query
a causal message graph generated by the execution of a set
of distributed processes. While interesting, this is essential a
post-mortem debugger. No explanation is provided of how to
build a concrete debugger given an existing formal semantics
of the base language.

Li et al. [12] introduced a formal semantics for debugging
synchronous message-passing programs e.g. MPI, Occam and
JCSP. The proposal shows a structural operational semantics
for a tracing procedure and bug/fix locating procedure. The
goal of these procedures is to record useful information that
helps to build the execution history of the program. The
semantics proposed uses the notion of transitions of states
over trace configurations. In contrast to this work, our se-
mantics model an asynchronous message-passing programs
employing communicating event-loop concurrency.

7 Conclusion and Future Work

In this paper, we investigate debugging techniques for com-
municating event-loop (CEL) languages. In contrast to other
studies, we use a formal approach to reason about break-
points and stepping for debuggers for CEL languages. While
this approach will not allow us to make any conclusions
about the usefulness from a developer perspective or the
acceptance of a tool, the formalization enables us to reason
about the huge design space of possible debugging mecha-
nisms, which so far was rarely explored.

Concretely, the formalization proposed in this paper mod-
els a debugger as a function, which when applied to a de-
bugging state (which includes the program being debugged),
yields a new debugging state. We have found that it is im-
portant to keep the history of program executions available

C. Torres, E. Gonzalez, C. Scholliers, S. Marr, H. Mossenbdck

in this debugging state in order to define the semantics of
advanced (history-dependent) breakpoints. All the advanced
breakpoints we investigated can be seen as predicates over
the history of a program execution and metadata connecting
the history to the program sources.

We have shown that the resulting formalism is power-
ful enough to define the breakpoints proposed in practical
debuggers for asynchronous message passing systems. How-
ever, using predicates over the history surpasses the existing
approaches to message-based breakpoints we are aware of
in terms of expressiveness and the possible breakpoints that
are supported.

In the future, we hope this formal approach will help
us to determine whether all possibly useful features of a
debugger are covered, for instance, with respect to specific
kinds of concurrency issues. Furthermore, it remains an open
question whether such a general history-based approach
to breakpoints and stepping is realistic and does not have
unacceptable high overheads for practical implementations.

Acknowledgments

We would like to thank the reviewers of this paper for their
comments. Carmen Torres Lopez was funded by a grant of
the Research Foundation Flanders (FWO), project number
G004816N. Stefan Marr was funded by a grant of the Austrian
Science Fund (FWF), project number 12491-N31.

References

[1] Karen L. Bernstein and Eugene W. Stark. 1995. Operational Semantics
of a Focusing Debugger. Electronic Notes in Theoretical Computer
Science 1 (1995), 13 — 31. MFPS XI, Mathematical Foundations of
Programming Semantics, Eleventh Annual Conference.
Elisa Gonzalez Boix, Carlos Noguera, and Wolfgang De Meuter. 2014.
Distributed debugging for mobile networks. Journal of Systems and
Software 90 (2014), 76-90.
Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William
Maddox, and Eliot Miranda. 2010. Modules as Objects in Newspeak. In
ECOOP 2010 - Object-Oriented Programming. LNCS, Vol. 6183. Springer,
405-428.
Fabio Q. B. da Silva. 1992. Correctness proofs of compilers and de-
buggers: an approach based on structural operational semantics. Ph.D.
Dissertation. University of Edinburgh, UK. British Library, EThOS.
[5] GianLuigi Ferrari and Emilio Tuosto. 2001. A Debugging Calculus
for Mobile Ambients. In Proceedings of the 2001 ACM Symposium on
Applied Computing (SAC ’01). ACM, New York, NY, USA, Article 1.
[6] Gian Luigi Ferrari, Roberto Guanciale, Daniele Strollo, and Emilio Tu-
osto. 2008. Debugging Distributed Systems with Causal Nets. ECEASST
14 (2008).
Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep
Tetali, Tyson Condie, Todd Millstein, and Miryung Kim. 2016. BigDe-
bug: Debugging Primitives for Interactive Big Data Processing in Spark.
In Proceedings of the 38th International Conference on Software Engi-
neering (ICSE ’16). ACM, New York, NY, USA, 784-795.
V. Jagannath, Z. Yin, and M. Budiu. 2011. Monitoring and Debugging
DryadLINQ Applications with Daphne. In 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd
Forum. 1266-1273.
Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund,
Matthias Felleisen, Matthew Flatt, Jay A. McCarthy, Jon Rafkind, Sam

[2

—

[3

—

[4

—

[7

—

[8

—

[9

—

A Principled Approach towards Debugging ...

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Tobin-Hochstadt, and Robert Bruce Findler. 2012. Run your research:
on the effectiveness of lightweight mechanization.. In POPL, John Field
and Michael Hicks (Eds.). ACM, 285-296.

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a
Distributed System. Commun. ACM 21, 7 (July 1978), 558-565.

Max Leske, Andrei Chicg, and Oscar Nierstrasz. 2016. A Promis-
ing Approach for Debugging Remote Promises. In Proceedings of the
11th Edition of the International Workshop on Smalitalk Technologies
(IWST’16). ACM, New York, NY, USA, Article 18, 9 pages.

He Li, Jie Luo, and Wei Li. 2014. A formal semantics for debugging
synchronous message passing-based concurrent programs. Science
China Information Sciences 57, 12 (01 Dec 2014), 1-18.

Stefan Marr and Hanspeter Mossenbock. 2015. Optimizing Communi-
cating Event-Loop Languages with Truffle. (26 October 2015).

Stefan Marr, Carmen Torres Lopez, Dominik Aumayr, Elisa Gonza-
lez Boix, and Hanspeter Méssenbéck. 2017. A Concurrency-Agnostic
Protocol for Multi-Paradigm Concurrent Debugging Tools. In Proceed-
ings of the 13th Symposium on Dynamic Languages (DLS’17). ACM,
12.

Charles E McDowell and David P Helmbold. 1989. Debugging concur-
rent programs. ACM Computing Surveys (CSUR) 21, 4 (1989), 593-622.

Mark S Miller, E Dean Tribble, and Jonathan Shapiro. 2005. Concur-
rency among strangers. In International Symposium on Trustworthy
Global Computing. Springer, 195-229.

Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert
Hirschfeld. 2016. Studying the advancement in debugging practice
of professional software developers. Software Quality Journal 25, 1
(2016), 83-110.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

AGERE’17, October 23, 2017, Vancouver, Canada

Semih Salihoglu, Jaeho Shin, Vikesh Khanna, Ba Quan Truong, and
Jennifer Widom. 2015. Graft: A Debugging Tool For Apache Giraph.
In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’15). ACM, New York, NY, USA, 1403-
1408.

Guido Salvaneschi and Mira Mezini. 2016. Debugging for Reactive
Programming. In Proceedings of the 38th International Conference on
Software Engineering (ICSE °16). ACM, New York, NY, USA, 796-807.
Jan Schifer and Arnd Poetzsch-Heffter. 2010. JCoBox: Generalizing
Active Objects to Concurrent Components. In ECOOP 2010 — Object-
Oriented Programming (LNCS), Vol. 6183. Springer, Berlin, 275-299.
Terry Stanley, Tyler Close, and Mark Miller. 2009. Causeway: A
message-oriented distributed debugger. Technical Report. HP Labs.
1-15 pages.

Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni
Lombide Carreton, Dries Harnie, Kevin Pinte, and Wolfgang De Meuter.
2014. AmbientTalk: programming responsive mobile peer-to-peer
applications with actors. Computer Languages, Systems and Structures
40, 3-4 (2014), 112-136.

Tom Van Cutsem, Stijn Mostinckx, Elisa Boix Gonzalez, Jessie
Dedecker, and Wolfgang De Meuter. 2007. AmbientTalk: Object-
oriented Event-driven Programming in Mobile Ad hoc Networks. XXVI
International Conference of the Chilean Society of Computer Science
(SCCC’07) (2007), 3-12.

Roland Wismiiller. 1997. Debugging Message Passing Programs Us-
ing Invisible Message Tags.. In PVM/MPI (Lecture Notes in Computer
Science), Marian Bubak, Jack Dongarra, and Jerzy Wasniewski (Eds.),
Vol. 1332. Springer, 295-302.

	Abstract
	1 Introduction
	2 Debugging Communicating Event-Loop Programs
	2.1 Communicating Event-Loop in a Nutshell
	2.2 Debugging Communicating Event-Loop Languages
	2.3 Breakpoints for Communicating Event-Loop Languages

	3 Formalization of the Concurrent Event-Loop Model
	4 A Semantic Framework to Debug Communicating Event-Loop Programs
	4.1 General Design of the Formalization
	4.2 Debugger State for a CEL Debugger
	4.3 Formalizing CEL Debuggers

	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

