
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

A Concurrency-Agnostic Protocol for Multi-Paradigm
Concurrent Debugging Tools∗

Stefan Marr
Johannes Kepler University

Linz, Austria
stefan.marr@jku.at

Carmen Torres Lopez
Vrije Universiteit Brussel

Brussels, Belgium
ctorresl@vub.be

Dominik Aumayr
Johannes Kepler University

Linz, Austria
dominik.aumayr@jku.at

Elisa Gonzalez Boix
Vrije Universiteit Brussel

Brussels, Belgium
egonzale@vub.be

Hanspeter Mössenböck
Johannes Kepler University

Linz, Austria
hanspeter.moessenboeck@jku.at

Abstract
Today’s complex software systems combine high-level con-
currency models. Each model is used to solve a specific set
of problems. Unfortunately, debuggers support only the low-
level notions of threads and shared memory, forcing devel-
opers to reason about these notions instead of the high-level
concurrency models they chose.
This paper proposes a concurrency-agnostic debugger

protocol that decouples the debugger from the concurrency
models employed by the target application. As a result, the
underlying language runtime can define custom breakpoints,
stepping operations, and execution events for each concur-
rency model it supports, and a debugger can expose them
without having to be specifically adapted.

We evaluated the generality of the protocol by applying it
to SOMns, a Newspeak implementation, which supports a
diversity of concurrency models including communicating
sequential processes, communicating event loops, threads
and locks, fork/join parallelism, and software transactional
memory. We implemented 21 breakpoints and 20 stepping
operations for these concurrency models. For none of these,
the debugger needed to be changed. Furthermore, we visu-
alize all concurrent interactions independently of a specific
concurrency model. To show that tooling for a specific con-
currency model is possible, we visualize actor turns and
message sends separately.

CCS Concepts • Software and its engineering→ Con-
current programming languages; Software testing and de-
bugging;

Keywords Debugging, Tooling, Concurrency, Breakpoints,
Stepping, Visualization

∗Submitted for Review

DLS’17, October 24, 2017, Vancouver, Canada
2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference format:
Stefan Marr, Carmen Torres Lopez, Dominik Aumayr, Elisa Gonza-
lez Boix, andHanspeterMössenböck. 2017. AConcurrency-Agnostic
Protocol for Multi-Paradigm Concurrent Debugging Tools. In Pro-
ceedings of Dynamic Languages Symposium, Vancouver, Canada,
October 24, 2017 (DLS’17), 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Building and maintaining complex concurrent systems is
a hard task. Some developers combine different high-level
models to solve problems with a suitable tool [Tasharofi et al.
2013]. Unfortunately, debugging support for combined con-
currency models is minimal, which makes building and main-
taining complex concurrent systems even harder.

For more than three decades, debugging support for con-
currency models has been studied for each model in iso-
lation [McDowell and Helmbold 1989]. As a result, thread-
based languages such as Java and C/C++ have debuggers
aware of threads and locks. Similarly, ScalaIDE and Erlang
provide support for actors and message sending.
However, support for debugging combined concurrency

models is still missing. The main challenge is to identify a
common representation for concurrency models so that a
debugger does not need specialized support for each model.
For example, there are four main interpretations of the ac-
tor model, each of which has been implemented in different
variations [De Koster et al. 2016]. For comprehensive debug-
ging support of all these variations, a debugger needs to
abstract from the concrete concurrency model and provide
a common set of abstractions instead. This would allow us
to use the same debugger without changes for the different
concurrency models and their numerous variations.
This paper presents the Kómpos protocol, a concurrency-

agnostic protocol to enable debuggers to support a wide range
of concurrency models. Using the Kómpos protocol, we
built the Kómpos debugger for online debugging of com-
plex concurrent systems that combine communicating event

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

DLS’17, October 24, 2017, Vancouver, Canada Marr et al.

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

loops (CEL) [Miller et al. 2005], communicating sequential
processes (CSP) [Hoare 1978], software transactional memory
(STM) [Harris et al. 2005], fork/join [Blumofe et al. 1995], and
shared-memory threads and locks. Based on the concurrency-
agnostic protocol, Kómpos supports a rich set of breakpoints
for the various concurrency abstractions, a rich set of step-
ping semantics to explore program behavior, a generic vi-
sualization of interactions between concurrent entities, as
well as an actor-specific visualization of turns and message
sends. This evaluation shows that the Kómpos protocol is (1)
general enough to support advanced debugger features for
shared-memory and message-passing models, and (2) that
it supports tools using the provided data independently of
any concurrency model, while preserving the ability to build
tools specific to a single model.

Kómpos is a debugger for SOMns, a Newspeak implemen-
tation [Bracha et al. 2010] based on Truffle [Würthinger et al.
2012]. SOMns’ debugger support is built on Truffle’s tool-
ing and debugger features [Seaton et al. 2014; Van De Vanter
2015]. SOMns supports the five aforementioned concurrency
models and implements breakpoints, stepping, and a tracing
mechanism for them. Because of the concurrency-agnostic
design of the Kómpos protocol, the Kómpos debugger is
independent from these concurrency models.

The contributions of this paper are:

• An analysis of themajor shared-memory andmessage
passing concurrency models to identify abstractions
for a concurrency-agnostic debugger protocol.
• A concurrency-agnostic debugger protocol that en-

ables custom breakpoints, stepping, and visualization.
• An implementation of the Kómpos protocol as part
of the Kómpos debugger and SOMns.
• An evaluation of the protocol based on CEL, CSP,
STM, fork/join, and threads and locks.

2 Background
This section discusses existing debugger protocols and intro-
duces the Truffle debugger, on which we build our work.

2.1 Debugger Protocols
Runtime systems and integrated development environments
(IDE) typically communicate via a debugger protocol. This
includes the Java Debug Wire Protocol (JDWP),1 the GDB
machine interface,2 the Chrome DevTools protocol,3 and the
Visual Studio Code debug protocol.4

1Java Debug Wire Protocol, Oracle Inc., access date: 2017-05-16, https://docs
.oracle.com/javase/8/docs/technotes/guides/jpda/jdwp-spec.html
2GDB/MI Interface, The GNU Project Debugger, access date: 2017-05-16,
https://sourceware.org/gdb/onlinedocs/gdb/GDB002fMI.html
3Chrome DevTools Protocol, Google, access date: 2017-05-16, https://chrome
devtools.github.io/devtools-protocol/
4VS Code Debug Protocol, Microsoft, access date: 2017-05-16, https://github
.com/Microsoft/vscode-debugadapter-node/tree/master/protocol

These protocols define commands to interact with the
program, to request information about threads, stack frames,
local variables, objects, memory. They also communicate
events, e.g., when a breakpoint was hit. While the protocols
differ in format and structure, they cover a similar set of
common debugger features. For instance, they allow a user
to define a breakpoint for a specific source location, possibly
with filters and conditions attached to it.

The use of a debugger protocol also decouples runtime
systems and debuggers facilitating the construction of new
tools. However, these protocols are often designed for se-
quential or threaded languages. As such, their support for
debugging concurrency abstractions is rather limited. For
instance, JDWP and GDB can show a list of running threads
or control execution of a particular thread. GDB also has
support to request information about Ada tasks. In Chrome,
a step-into-async operation is the only explicit support for
concurrent stepping. In short, the protocols are limited to
these specific concurrency concepts.

Thus, custom breakpoints or stepping operations for con-
currency models are not supported. Instead, the protocols
support a fixed set of breakpoint and stepping operations.
Any extension requires changing the protocol.

In this paper, we argue that a protocol similar to the ones
mentioned above forms a foundation for the basic debugger
features, i.e., to interact with the program and request basic
information such as values or local variables and objects.
However, in contrast to the classical debugger protocols,
we propose a concurrency-agnostic protocol that supports
a wide range of concurrency models. Our implementation
in SOMns is inspired by the Visual Studio Code protocol
(cf. section 5), but as detailed later, the Kómpos protocol
abstracts completely from different breakpoints and stepping
operations and thereby provides the necessary flexibility to
support custom semantics for different concurrency models.

2.2 Truffle Debugger: A Language-Agnostic
Debugging Framework

SOMns is built on top of Truffle, a framework for AST-based
interpreters [Würthinger et al. 2012]. Part of the framework
is support for interpreter instrumentation, which is used, e.g.,
for language-agnostic debugging and execution monitoring.
The framework provides Truffle-languages with a classic
breakpoint-based debugger for sequential code [Seaton et al.
2014], which we use in SOMns for the basic sequential step-
ping and breakpoint support.
One key element of the framework is its use of tags for

the AST nodes [Van De Vanter 2017]. For the Truffle debug-
ger support, a language annotates AST nodes with tags for
Statement, Call, and Root. Based on these tags, the debug-
ger determines the target nodes for line breakpoints, single
stepping, step over, and returning from a method. SOMns

2

https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/jdwp-spec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/jdwp-spec.html
https://sourceware.org/gdb/onlinedocs/gdb/GDB_002fMI.html
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://github.com/Microsoft/vscode-debugadapter-node/tree/master/protocol
https://github.com/Microsoft/vscode-debugadapter-node/tree/master/protocol

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

DLS’17, October 24, 2017, Vancouver, Canada

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

uses the same mechanism for AST node tags to encode addi-
tional information, which is used to recognize concurrency-
related operations as well as generic syntax information such
as keywords. The Kómpos debugger can use this information
for debugging and syntax highlighting.

3 Which Concurrency Concepts are
relevant for Debugging?

This section analyzes concurrency models to identify the
basic concepts that need to be supported by a debugger pro-
tocol to enable concurrency-related breakpoint and stepping
operations. As a basic categorization, we distinguish shared-
memory and message-passing models [Almasi and Gottlieb
1994]. We analyze instances for both types of models in-
cluding threads and locks, STM, and fork/join parallelism
as shared-memory models, and CEL and CSP as message-
passing models. To account for more advanced debugger
features, we also analyze what information would be needed
to visualize these concepts.

3.1 Threads and Locks (T&L)
Shared-memory models, as supported by e.g., C/C++, Java,
C#, have a wide range of concepts for simultaneous execu-
tion and access control to shared resources. For brevity, this
analysis includes only threads, locks, condition variables, and
object monitors. Other constructs are left to future work.

Threads are the active entities that execute code. Locks and
object monitors enable the synchronization of threads, i.e.,
they restrict thread interactions on shared resources to en-
force correctness properties. Condition variables are used to
communicate between threads that certain conditions have
changed. Furthermore, object monitors, as known from Ada
or Java, are a structured synchronization mechanism that
uses a lock to protect some shared resource in the dynamic
scope of some object method or code block. In contrast, locks
and condition variables are entities with which a thread can
interact in unstructured ways.
For debugging, it needs to be possible to step through

the execution of a thread and set breakpoints on statements.
This should include the standard operations to step into or
over a call to, and return from a method. However, the de-
bugger should also provide stepping and breakpoints for
concurrency abstractions such as locks, object monitors, and
conditions variables. This would allow developers to check
for incorrect synchronization. For locks, the debugger should
be able to step from an acquire operation to the correspond-
ing release operation to see how they relate. That also helps
to detect unbalanced acquire/release operations which, e.g,
can lead to starvation if locks are not released. Similarly, for
object monitors, the debugger should allow to set a break-
point on entering and exiting the monitor. For condition
variables, stepping between the wait and notify operations
allows to observe their effects on, and communication with
other threads. From the point where a thread is created in a

program, the debugger should allow to set a breakpoint on
its execution, or to step into its execution. Similarly, when
a thread terminates, the debugger should allow to suspend
execution of the thread that joins with it and waits for ter-
mination.
The high-level interactions of threads entering monitors

and using locks or condition variables are also relevant for
visualization, which is useful for identifying unintended in-
teractions or missing synchronization.

3.2 Communicating Event Loop Model (CEL)
The CEL model is a variation of the actor model, used by lan-
guages such as E [Miller et al. 2005] andAmbientTalk [VanCut-
sem et al. 2014]. The main concepts are actors, messages,
promises, and turns. Actors are the active entities, each with
its own event loop. Actors execute messages as turns, i.e.,
one by one, in the order they are received. They contain a
set of objects and interact via asynchronous messages be-
cause actors do not share memory. Promises are eventual
values. They can establish a data dependency between actors,
e.g., as placeholders for the return value of an asynchronous
message. Since the CELmodel includes only non-blocking ab-
stractions, promise values can be accessed only via callbacks,
which are executed as turns on an actor.

When debugging such CEL actors, developers should be
able to step through turns of a specific actor to see which
messages are received. This means, the debugger should
combine normal sequential stepping within a turn with the
ability to skip sequential operations and step to the next turn.
When sending messages, suspending the actor’s execution
before a message is sent would allow developers to inspect
its parameters and target object. Similarly, following the
execution to observe how promises are resolved and how
callbacks on them are executed after resolution can help
developers to identify communication issues or unexpected
values. For all these operations, the debugger should be able
to either explicitly step through them or define breakpoints.
For a visualization, the high-level interactions of actors

with messages and promises are relevant. For example, a
visualization of the order in which turns, i.e., messages are
executed could help to identify synchronization issues and
bad message interleavings.

3.3 Communicating Sequential Processes (CSP)
The main concepts in CSP are processes, channels, and mes-
sages. Processes are the active entities that execute code.
Channels are first-class elements that connect processes and
allow them to communicate by passing messages with ren-
dezvous semantics. A message is a specific datum exchanged
via a channel. Like CEL, CSP is a message passing model.
However, CSP uses blocking semantics and has no notion of
turns, which makes it very different to CEL.

For debugging, it should be possible to follow the sequen-
tial execution of a process, from its creation to the end, like

3

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

DLS’17, October 24, 2017, Vancouver, Canada Marr et al.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

in threads. But, similar to CEL, the debugger should be able
to step through message sends, i.e., in this case channel op-
erations, to identify the communication partners and their
state, or put breakpoints on these operations. Furthermore, it
should account for the rendezvous semantics of channels, to
step from a receiver to the continuation in the sender. This
is useful since channels can be passed around, which might
lead to the wrong processes communicating with each other.
For visualization, the communication between processes

and the run-time network of channels is relevant, e.g., to
identify communication partners or lack-of-progress issues.

3.4 Software Transactional Memory (STM)
STM provides a wide range of notions for transactions, e.g.,
open or closed, optimistic or pessimistic. For brevity, this
analysis includes only the basic concepts of threads and trans-
actions. Threads are the same as for other shared-memory
models. Transactions, on the other hand, introduce a dy-
namic scope, in which all modifications to shared state are
applied either atomically or not at all.

The debugger should be able to interact with transactions
in a way that makes it possible to observe the behavior when
transactional conflicts occurs. Thus, developers should be
able to set breakpoints or step through the execution of
transactions to the final commit operation. Being able to
stop right before a transaction commits allows developers to
examine transaction interactions. The developer should also
be able to step between transactions to follow the high-level
flow of program elements interacting on shared state.
For a visualization, the transactions executed on threads

and their ordering could help to identify missing synchro-
nization, unintended dependencies, or performance issues.

3.5 Fork/Join Parallelism (F/J)
Fork/Join programming enables parallel divide-and-conquer
algorithms. The main abstraction is an asynchronously exe-
cuting task, which produces a result eventually. The model is
only concerned with decomposing problems into a structure
of tasks that synchronize based on fork and join operations.
Other forms of synchronization are left out of the model.

A debugger should focus on these fork and join operations.
Breakpoints and stepping should enable developers to ex-
plore the recursive structure of spawns and joins. Visualizing
these spawn and join dependencies may help to understand
the recursive nature of complex fork/join programs.

3.6 Analysis and Conclusion
The above discussion identified the main concepts for CSP,
CEL, F/J, STM, and T&L. This section categorizes them to
establish abstractions for a debugger protocol.

Activities are the active entities executing code. This
includes threads, actors, processes, and fork/join tasks. Dy-
namic scopes are well-structured and nested parts of a pro-
gram’s execution during which certain concurrency-related

Interpreter Debugger

CEL CSP

Threads&Locks

STM

Fork/Join

Debugging Support
Kómpos
Protocol

SOMNS Kómpos

Figure 1. General architecture: Interpreter and debugger
communicate via the concurrency-agnostic Kómpos protocol.
The interpreter provides the implementation of the different
concurrency models and debugging support.

properties hold, e.g., during a transaction, while executing
code under an object monitor, or during an actor message
turn. Passive entities are concurrency entities that are rele-
vant for a program’s execution, which do not act themselves,
but are acted upon. For example, we consider messages and
promises as passive entities of the CEL model, while the
ones of CSP are channels and messages. Note that we do not
consider normal objects as passive entities, because it was
not needed.

To model interactions between these entities, we use send
and receive operations. A Send Operation is an interaction
that initiates communication or synchronization. A Receive
Operation, is an interaction that reacts to a communication
or synchronization operation. Consequently, we consider ac-
quiring a lock or signaling a condition to be send operations
and joining with a thread is a receive operation.

Table 1 gives an overview of the identified categories per
concurrency model. These categories of entities and opera-
tions are used as foundation for the Kómpos protocol and
detailed in the following section.

4 A Concurrency-Agnostic Debugger
Protocol

To build a concurrency-agnostic debugger, we devise a proto-
col for communication between the debugger and interpreter
that can support the breakpoints, stepping operations, and
visualizations envisioned in section 3, without merely enu-
merating all the concurrency concepts. The goal is that only
the language implementation needs to know the specifics
for each concurrency model, while the debugger remains
independent of them. Figure 1 shows the architecture of such
a system. An interpreter with support for various concur-
rencymodels is connected to a debugger via the concurrency-
agnostic Kómpos protocol.

This section discusses the design of the Kómpos protocol
based on the analysis in section 3.6. First, it gives a high-level
description, then discusses an example, and finally details
each of the protocol elements.

4

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

DLS’17, October 24, 2017, Vancouver, Canada

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

Table 1. A Taxonomy of Concurrency Concepts Relevant for Debugging.

T&L CEL CSP STM F/J
Activities threads actors processes threads tasks

Dynamic Scopes object monitors turns transactions

Passive Entities conditions messages channels
locks promises messages

Send Operations acquire lock send message send message
signal condition resolve promise

Receive Operations release lock receive message join thread join task
wait for condition join process
join thread

4.1 High-Level Overview of the Protocol Concepts
From section 3.6 we derive that concurrency concepts rele-
vant for breakpoints, stepping operations, and visualization
can be modeled based on activities, dynamic scopes, passive
entities, send operations, and receive operations. Using these
basic notions, a protocol is independent of any specific con-
currency model. However, the debugger requires meta data
to match debugging operations and concrete concurrency
concepts. Thus, when the debugger connects to the inter-
preter, it receives meta data with details on the supported
concurrency models, the entities they define, their break-
points, and their stepping operations. Note, this informa-
tion is mostly opaque to the debugger. For breakpoints and
stepping, it is sufficient to match opaque identifiers, as is
explained in section 4.3.

Concurrency Concepts. As discussed in section 3.6, activi-
ties are active entities that execute code. The debugger pro-
tocol uses this notion, e.g., to offer stepping operations that
are specific to an activity type. Dynamic scopes are used, for
instance to determine possible stepping operations. Some
stepping operations are only available during a transaction
or while holding an object monitor.
Passive entities, send, and receive operations are used for

the visualization of concurrent interactions. However, they
are currently not used in the context of pausing/resuming
program execution or performing step-by-step execution.

Debugger Concepts. For debugging, the protocol includes
various other concepts. For brevity, we discuss only the ones
distinct from other debugger protocols (cf. section 2.1).

A source is either a file or some other form of source text.
The source text has to be annotated with source tags to iden-
tify the semantic elements contained in a source range. For
instance, tags can indicate the source locations of message
sends or lock operations so that the debugger can show break-
points or stepping operations. As mentioned in section 2.2,
SOMns employs Truffle’s tagging mechanism to annotate
AST nodes in the interpreter. The Kómpos protocol is used
to send this information to the debugger.

atomic {

 int b = this.fieldB;

 this.fieldA = b + 1;

}

1

2

3

actType scopes

thread

thread

thread

transaction

transaction

Atomic

Figure 2. Example program using an atomic transaction. The
debugger recognizes the atomic keyword via the Atomic tag.
When execution suspends at one of the three program points
indicated with a number, the debugger receives location,
indicated activity type, and active dynamic scopes.

A breakpoint type defines suspension points, which may
be related to concurrency concepts. For example, one break-
point type could be for the point where a message is received
by an actor. They are distinguished by name and definewhich
source tags they apply to. Thus, the debugger does not need
to know the relationship between tags and breakpoints. In-
stead, it can treat tags as opaque identifiers.
A stepping operation type defines an operation to follow

program execution sequentially or concurrently. Similar to
breakpoint types, stepping operation types are distinguished
by name. Furthermore, they define criteria to determine
whether the operation is applicable in the current dynamic
context. Such applicability criteria include source tags, the
activity type executing the currently suspended code, as well
as the dynamic scopes active for the current execution.

4.2 Example: Breakpoints and Stepping for an
Atomic Block

This section discusses an example to illustrate the protocol.
Consider the program fragment in fig. 2 that uses an atomic
block to ensure that the fieldA of an object is updated with-
out interference by other threads.

The figure indicates three possible program points with a
number, in which execution can be suspended for the atomic
block. Further, it shows that the atomic block is known to
the debugger via the Atomic tag, which it received as part

5

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

DLS’17, October 24, 2017, Vancouver, Canada Marr et al.

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

of the meta data and source information. When execution is
suspended, the debugger received the source location, the
activity type, and active dynamic scopes, which are depicted
in the right hand side of the figure. From the meta data and
the Atomic tag associated with the source location for 1⃝,
the debugger can derive that it can offer a breakpoint that is
triggered right before a transaction is started.
Setting the breakpoint sends a BreakpointUpdate mes-

sage to the SOMns interpreter, which includes the coordinate
for source location and the chosen breakpoint type. After-
wards, the program can stop at the atomic keyword, and
the interpreter sends a Stopped message to the debugger.
The message says that execution is suspended at location
1⃝, and that the current activity is a thread with a specific
id. Based on this location information, source tags, and exe-
cution information, the debugger can derive the applicable
stepping operations. Note that in this case there is no concur-
rent stepping applicable. However, all stepping operations
are handled uniformly. When the debugger determines the
stepping operations for 1⃝, the resulting set contains only
the sequential stepping operations that always apply, e.g.
step into and step over.

When the developer chooses the step-into operation, the
debugger sends a Step message to the interpreter, which in-
cludes the thread id and the chosen stepping operation. After
the interpreter performs this step, execution is suspended
at 2⃝ and the debugger receives again the current location
and activity. It also receives the information that a dynamic
scope for a transaction is active. Based on this scope, it can
offer extra stepping operations, e.g., to step right before or
after the commit for the transaction. When executing these
stepping operations, execution would continue either to 3⃝,
or to the first statement after the atomic block.

4.3 Detailed Description of the Kómpos Protocol
This section provides a more detailed overview of the pro-
tocol. While we discuss the semantics of the protocol, we
refrain from prescribing a specific implementation, since we
consider the main ideas to be applicable to wide range of
concrete debugger protocols. A concrete prototype imple-
mentation is discussed in section 5.

The protocol assumes bidirectional communicate between
interpreter and debugger, which could be realized with re-
mote function calls, messages on sockets, etc.

Figure 3 shows an overview of the main concepts used by
the Kómpos protocol. We distinguish between (1) debugging-
specific messages exchanged between debugger and inter-
preter, (2) trace data sent from the interpreter for visualiza-
tion, and (3) a general meta-data description used to interpret
the exchanged messages. We detail each of them below.

DebuggerMessages. For stepping and breakpoints, the Kóm-
pos protocol uses the first four debugger messages in fig. 3.

Meta Model

Debugger Messages Trace Events

ActivityType

creation: byte

completion: byte

icon: string

EntityType

id: typeId

label: string

DynamicScopeType

start: byte

end: byte

PassiveEntityType

creation: byte

BreakpointType

name: string

label: string

applicableTo: Tag[]

SteppingType

name: string

label: string

applicableTo: Tag[]

activities: ActivityType[]

scopes: DynamicScopeType[]
SendOperationType

marker: byte

entity: EntityType

target: EntityType

ReceiveOperationType

marker: byte

source: EntityType

Source

URI: URI

sourceText: string

locations: TaggedCoord[]

BreakpointUpdate

location: Coord

type: BreakpointType

Stopped

activityId: id

location: Coord

actType: ActivityType

scopes:DynamicScopeType[]

Step

activityId: id

type: SteppingType

Symbols

syms: Map<symId, string>

ActivityCreation

activityId: id

name: symId

location: Coord

ActivityCompletion

ScopeStart

scopeId: id

location: Coord

ScopeEnd

PassiveEntityCreation

entityId: id

location: Coord

SendOperation

entityId: id

targetId: id

ReceiveOperation

sourceId: id

marker: byte

Figure 3. Class diagram of the main elements of the Kóm-
pos protocol. The meta model describes the concurrency
and debugger concepts supported by the interpreter, and
provides the debugger with the meta data to identify when
and where breakpoints and stepping operations are applica-
ble. Debugger messages are used to update the debugger or
interpreter. Trace events encode an execution trace used for
visualization. Trace events are prefixed with a marker byte.

The Source message provides the source information to
the debugger. Since the debugger is to be agnostic from spe-
cific concurrency concepts, as well as incidentally from a spe-
cific language, we provide source information explicitly. The
message includes a URI to identify the source file or resource,
the source text, and a list of tagged source locations. Source
locations specify the exact coordinates, for instance based
on a line number, column number, and character length. The
tags are merely opaque identifiers which identify concur-
rency operations, e.g., as seen with the Atomic tag in fig. 2.

6

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

DLS’17, October 24, 2017, Vancouver, Canada

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

The BreakpointUpdate message is used to communicate
breakpoints from the debugger to the interpreter. It encodes
the source location and the breakpoint type.
The Stopped message is sent from the interpreter to the

debugger to indicate that either a breakpoint was hit or a step-
ping operation completed. It identifies the current location
and the suspended activity with id and type. Furthermore, it
includes a list of currently active dynamic scopes for this ac-
tivity. Note that the activity type and active dynamic scopes
can also be determined from the trace data, but providing
them explicitly simplifies the debugger implementation.

Finally, the Stepmessage is sent from the debugger to the
interpreter to instruct the latter to resume execution of a
specified activity with a given stepping type.

The last message listed in fig. 3, called Symbolsmessage, is
an optimization. It avoids sending long strings repeatedly by
sending a symbol table from the interpreter to the debugger.

Execution Trace Data. To provide details about the execu-
tion of a concurrent program, the Kómpos protocols uses
trace events that encode the program’s behavior with 7 dif-
ferent trace entries. We use these trace events for instance
to visualize concurrent interactions. In general, each trace
event starts with a marker, which is indicated by the dashed
line in fig. 3. The relation between the concrete marker and
a concurrency concept is defined via the meta data discussed
in the following subsection.

An ActivityCreation event records the id of the created
activity, its name, and the source location of the creation op-
eration. An ActivityCompletion event is merely a marker
recording that an activity terminated. The corresponding
activity id can be determined from the complete trace. A
ScopeStart event records the beginning of a dynamic scope.
It records the id of a scope, which corresponds to, e.g., the
message id for an actor turn. It also includes the source loca-
tion for the scope, e.g., the method invoked for a turn, or the
atomic code block for a transaction. A ScopeEnd event is also
a marker that can be matched to the scope start implicitly. A
PassiveEntityCreation event records the id of the passive
entity created and the source location of the operation.

Interactions are recorded as SendOperations with the id
of the involved passive entity, e.g., channel or message, and
the target entity id, e.g., the receiving actor. Information
about the sending entity can be inferred from the trace based
on the dynamic scope or current activity. ReceiveOperations
encode merely the id for the source entity which is for in-
stance a channel or fork/join task.

Meta Data Description. The debugger messages and trace
events discussed above are completely independent from
concurrency models. To distinguish different types of enti-
ties and interactions, the interpreter sends meta data to the
debugger when the connection is initialized. The meta data
consists of the 8 concepts shown at the top of fig. 3.

There exist three types of entities: ActivityType, Dyna-
micScopeType, and the PassiveEntityType. EntityType
defines data common to all entity types. All entities have
a label, i.e. a name, and a unique id to distinguish them.
ActivityType additionally defines unique trace eventmarker
for activity creation and completion, as well as an identifier
for an icon to be used in the user interface. DynamicScopeType
defines the start and end markers for scopes, and Passive-
EntityType defines creation marker.
The BreakpointType defines the possible breakpoints.

Each type has a unique name, a label to be used in the user
interface, and an applicability criterion based on source tags.
If a source location has one of the listed tags, then it supports
the breakpoint. If a breakpoint type does not specify any
source tags, it applies to all source locations.

The SteppingType defines the stepping operations. Each
type has a name and label. As for breakpoints, source tags
also define whether a stepping operation is applicable. For
instance, the operation to step to the receiver of a message
is only available on a message-send operation. An additional
applicability criterion is the current activity type, e.g., to
enable stepping to the next turn for actors. Similarly, stepping
can be conditional to the current dynamic scope. As such
the third applicability criterion is the current scope type. For
instance, some transaction-related stepping operations are
only useful within a transaction (cf. section 4.2).
Finally, the meta data specifies how to interpret Send-

Operations and ReceiveOperations. For each operation,
a unique marker is defined. For a send, the operation type
specifies the entity types for the involved entity and target.
This allows to interpret the id and identify which set of
entities it belongs to. Similarly, for a receive operation, the
type of the source entity is specified.
This meta data makes it possible to handle breakpoints

and stepping operations in an abstract manner. Furthermore,
it becomes possible to interpret the trace events either gener-
ically or specific to a concurrency model to visualize them.
We evaluate both aspects in section 6.

5 Implementation
This section provides some basic details of our implemen-
tation, which is used for the evaluation in the next section.
The Kómpos debugger is a web application running in a
browser. The SOMns interpreter implements the necessary
support for the concurrency models, their breakpoints, step-
ping semantics, and execution tracing. As shown in fig. 1,
the SOMns interpreter and the Kómpos debugger communi-
cate via a bi-directional connection, for which we use Web
Sockets.5 JSON is used to send the meta data and debugger
messages between the two components. For efficiency, the
trace events are sent through a separate binary web socket.

5The WebSocket Protocol, IETF, access date: 2017-05-16, https://tools.ietf .o
rg/html/rfc6455

7

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

DLS’17, October 24, 2017, Vancouver, Canada Marr et al.

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

When the Kómpos debugger connects to SOMns, the in-
terpreter sends the meta data to initialize the debugger. The
debugger then processes the meta data to enable efficient
parsing of trace events, to initialize breakpoints, stepping
operations, and visualizations. Based on the labels provided
as part of the meta data, the Kómpos debugger also inter-
prets the meta data to enable filtering and querying data
for specific concurrency models, which can be used to build
tools specific to a concurrency model.
When a program executes in the SOMns interpreter, it

sends source code and source tags as part of the Sourcemes-
sage to the debugger. The Kómpos debugger uses this data to
display the code, indicate possible locations for breakpoints,
and also apply syntax highlighting based on the tags. This
approach makes the debugger completely language-agnostic.

When the program hits a breakpoint or completes a step,
the debugger uses the data provided in the Stopped mes-
sage to highlight the source location. It also uses the meta
data and information about current activity type and active
dynamic scopes to select the possible stepping operations.
To obtain information on the stack trace and local variables,
we use messages similar to the Visual Studio Code debugger
protocol (cf. section 2.1). As a result, we can also use Visual
Studio Code as debugger for SOMns,6 at least for sequential
debugging.

One challenge for the correct implementation of a concur-
rent debugger such as Kómpos is that interactions between
the interpreter and debugger need to handle data races. For
instance, there is a race between the two web socket con-
nections, because the order, in which messages are received
between the two connections, is not guaranteed. This can
be problematic because we might hit a breakpoint for which
the debugger does not yet know the corresponding activ-
ity. We solve this in the debugger by using promises for the
activities, which delays handling for the debugger message
until all data is available. Similarly, a trace event can also use
a symbol id, for which the full string was not yet received
via the Symbols message. For trace events, we handle these
races by waiting for all dependent data elements before a
trace event can be used further.

6 Evaluation
This section evaluates the Kómpos protocol with respect to
its ability to support breakpoints, stepping operations, and vi-
sualizations. The goal of the evaluation is to demonstrate that
the protocol is agnostic of specific concurrency abstractions
and general enough to support a wide range of concurrency
models. We base the evaluation on the five aforementioned
models: CEL, CSP, fork/join, STM, and threads and locks.
These models are chosen for their different concurrency
characteristics, and for being the main programming models

6SOMns VS Code Extension, access date: 2017-05-16, https://github.com/s
marr/SOMns-vscode

in the field. All reported experiments are implemented as
part of SOMns7 and the Kómpos debugger [Marr et al. 2017].

6.1 Breakpoints
To evaluate the flexibility of the system to represent various
breakpoints, we apply the analysis results of section 3 to
SOMns. Specifically, we identify and implement 21 different
breakpoints that can be used to pause execution based on the
concurrency abstractions and their interactions. As a general
principle, we consider the point in time right before or after
a concurrent operation as potentially relevant. The goal is to
allow developers to observe the effects of an operation that
might interleave with other operations in the system. The
breakpoints are listed with a brief description in table 2.
With the concepts of the Kómpos protocol presented in

section 4.3, we were able to model all breakpoints solely by
specifying the source tag to identify the source locations they
apply to. No specific support was required in the debugger.
The breakpoint implementation is thus completely confined
to the interpreter, where the concurrency operations are
implemented. Arguably, the Kómpos protocol allows devel-
opers to define arbitrary breakpoints specific to concurrency
operations, or other kind of language constructs.

6.2 Stepping Operations
To evaluate the Kómpos protocol’s support for standard and
advanced stepping operations, we apply the results of the
analysis in section 3 and implement 20 different stepping op-
erations. Guided by the breakpoints in table 2, we identified
stepping operations that allow one to follow the execution
flow between various potential points of interest. The step-
ping operations are listed with a brief description in table 3.
With the Kómpos protocol, we were able to model all

those stepping operations and customize their applicability
based on a current source location, the type of the current
activity, or active dynamic scopes. Other than these generic
concepts, no support is required in the debugger. Similar to
the breakpoint support, the stepping operations are defined
completely in the interpreter, where the concurrency opera-
tions are implemented. This demonstrates that the Kómpos
protocol provides the desired flexibility to define arbitrary
stepping operations.

6.3 Visualization
Finally, we evaluate whether the data provided by the Kóm-
pos protocol can be used for visualizations. To this end, as-
sess whether it is possible to built a visualization that is
agnostic to the concurrency models as well as one that is
specifically designed for one concurrency model. The goal
is to identify where the boundary is between concurrency-
agnostic aspects and special-purpose constructs. We built:
(1) an agnostic visualization of interactions between entities
7SOMns and the Kómpos Debugger Protocol, access date: 2017-05-16, https:
//github.com/metaconc/SOMns/tree/uniform-trace-format

8

https://github.com/smarr/SOMns-vscode
https://github.com/smarr/SOMns-vscode
https://github.com/metaconc/SOMns/tree/uniform-trace-format
https://github.com/metaconc/SOMns/tree/uniform-trace-format

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

DLS’17, October 24, 2017, Vancouver, Canada

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

Models Name Description Source Tag
all activity creation before an actor, process, task, or thread is created ActivityCreation
CSP, F/J, T&L activity execution before first statement of the new activity is executed ActivityCreation
CSP, F/J, T&L before join before waiting that a process, task, or thread completes ActivityJoin
CSP, F/J, T&L after join after a process, task, or thread completed execution ActivityJoin

CEL actor message send before an actor message is sent EventualMessageSend
CEL actor message receiver before first statement of message is processed in the receiver EventualMessageSend
CEL before async. method activation before the first statement of a method activated by an async. msg send EventualMessageSend
CEL after async. method activation before returning from a method activated by an async. msg send EventualMessageSend
CEL before promise resolution before a promise is resolved with a value or error PromiseCreation
CEL on promise resolution before the first statement of all handlers registered on promise PromiseCreation

CSP before channel send before executing the send on a channel (set on send operation) ChannelWrite
CSP after channel receive after receiving a message from a channel (set on send operation) ChannelWrite
CSP before channel receive before receiving a message from a channel (set on receive operation) ChannelRead
CSP after channel send after sending on a channel (set on receive operation) ChannelRead

STM before transaction before starting a transaction Atomic
STM before commit before attempting to commit changes of a transaction Atomic
STM after commit after committing the transaction succeeded Atomic

T&L before acquire before attempting to acquire a lock AcquireLock
T&L after acquire after acquiring a lock AcquireLock
T&L before release before releasing a lock ReleaseLock
T&L after release after releasing a lock ReleaseLock

Table 2. Set of breakpoints implemented in SOMns. None of the breakpoints requires special support in the Kómpos protocol.
Instead, they are all implemented based on meta data that includes name and source tag.

Model Name Description Criteria
all resume continue execution of current activity
all pause pause execution of current activity
all stop terminate program
all step into step into method call
all step over step over method call
all return return from method call

CSP, F/J, T&L step into activity halt new activity before execution of the first statement source tag: ActivityCreation
CSP, F/J, T&L return from activity halt activity that joins with the current one, after joining current activity: Process, Task, Thread

CEL step to message receiver halt activity before executing the first statement of a received
message

source tag: EventualMessageSend

CEL step to promise resolver halt activity before resolving a promise source tag: PromiseCreation
CEL step to promise resolution halt all activities before executing the first statement of han-

dlers registered on a promise
source tag: PromiseCreation

CEL step to next turn continue current actor’s execution and stop before the first
statement of the next executed message

current activity: Actor

CEL return from turn to resolution continue current actor’s execution and stop before the exe-
cution of the first statement of all handlers registered on a
promise that is resolved by the current turn

current activity: Actor

CSP step to channel receiver halt activity reading from a channel to receive the sent message source tag: ChannelWrite
CSP step to channel sender halt activity sending to a channel source tag: ChannelRead

STM step to next transaction halt activity before starting the next transaction
STM step to commit halt activity before committing a transaction dynamic scope: Transaction
STM step after commit halt activity after committing a transaction dynamic scope: Transaction

T&L step to release halt activity before releasing a lock dynamic scope: monitor
T&L step to next acquire halt the next activity right after acquiring the current lock dynamic scope: monitor

Table 3. Set of stepping operations implemented in SOMns. None of these stepping operations require special support in the
Kómpos protocol. Instead, they are realized solely based on the applicability criteria provided as part of the meta data.

9

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

DLS’17, October 24, 2017, Vancouver, Canada Marr et al.

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

!! Platform

!! ReportActor

!! DataActor

!! JsonInputActor

!! InputGeneratorActor

↯↯ λbuildParallelSumTreefromto@371@40:: (9)
↯↯ λλcalculateSumOfwithfrominto@386@12@387@52 (9)

⧭⧭ JsonStreamTokenizer

⧭⧭ DataFilterProcess

Figure 4. Screenshot of the system interaction visualization.
Activities are represented as rectangles. The debugger as-
signs color ranges to an activity type, e.g., green for actors,
yellow for processes, and red for tasks. Color shades dis-
tinguish between activities of the same type. Black arrows
represent messages sent and gray dashed arrows indicate
who created an entity. Black bars with two white arrows
are a custom visualization for channels. The visualization is
chosen via an optional map using an entity type’s label.

in a program, and (2) a visualization specific to the actor
model which shows the execution of actor turns and their
causal relationships based on the messages sent in a turn.

6.3.1 System Interaction Visualization
The system interaction visualization shows how entities com-
municate with each other. Figure 4 shows a screenshot of
the visualization. Activities are visualized as rectangles with
rounded corners. Depending on the number of activities cre-
ated from the same source location, the visualization groups
the activities. Furthermore, the debugger chooses a different
color range depending on the activity type. On the other
hand, the icon in front of an activity’s name is directly spec-
ified as part of the meta data (cf. fig. 3). An ActivityType
includes a name for an icon, for which the debugger can then
determine a suitable visualization.

Passive entities are visualized with custom SVG graphics.
Figure 3 shows channels as two white arrows on top of a
black bar. The visualization is generated in the debugger
and matched to a PassiveEntityType based on its label.
The goal was to make these entities easier to recognize. The
design tradeoff here is between including more meta data
in the protocol and leaving room for the debugger to add
custom visualizations like this. We decided that the simplest
would be to have an extensible map in the debugger to select
a specific visualization for entities it is aware of.

The gray-dashed arrows between entities, i.e., activities or
passive entities, are determined based on their creation infor-
mation. The visualization does not show dynamic scopes. It
merely uses them to identify the connection between entities.
Actor and channel messages are not shown because we do

! Platform ! Pong ! Ping

Figure 5. Screenshot of the actor turn visualization. Each ac-
tor is shown on a lane with its turns indicated as circles. Lines
between turns indicate message sends. When expanding a
turn, it shows the order of the messages sent.

not record their creation, but rather the specific send/receive
operations. Thus, the visualization itself is agnostic from
the concurrency models, but it depends on how the data is
encoded in trace events for a specific concurrency model.

Send/receive events are used for the black arrows. Entities
exchanging more messages are displayed closer together.
Overall, the system interaction visualization is indepen-

dent of specific concurrency models. It just uses the knowl-
edge about activities, dynamic scopes, passive entities, cre-
ation operations, and send/receive operations to generate
a graph representing the systems interaction. For most as-
pects, the debugger independently visualizes the elements,
colors, and icons considering only meta data provided by the
interpreter. However, to provide the extra bit of polish, i.e.,
to provide an iconic representation of channels, it includes a
map of additional visualizations that matches entity type la-
bels.We consider this design a reasonable tradeoff that shows
that small customizations are possible, but a concurrency-
agnostic visualization is feasible.

6.3.2 Actor Turn Visualization
Figure 5 shows our second visualization which is inspired
by the processes view in Causeway [Stanley et al. 2009]. The
goal of this visualization is to show the causality between
turn executions and messages. It visualizes each actor in
the system on a lane, on which its turns are indicated as
circles. A line indicates the message that caused a turn.When
inspecting a specific turn, it unfolds into an ellipse and shows
sent messages (as rectangles) in the order they were sent. The
messages connect with arrows to the turns on the receiving
actor that processes them.
While this visualization is specific to the actor model,

parsing and interpreting of the trace events is still done in
an agnostic way. Only after obtaining the data, the Kómpos
debugger uses the meta data to determine which activities
are actors, which dynamic scopes are turns, and which send
operations are actor messages.

This visualization is specific to the notion of communicat-
ing event loops, and its implementation makes assumptions
aboutwhich interactions are possible. Nonetheless, it is based

10

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

DLS’17, October 24, 2017, Vancouver, Canada

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

on Lamport’s general happens-before relationship [Lamport
1978], which can be applied to other concurrency models,
too. Moreover, its implementation in Kómpos is based on the
abstract notions of the protocol, and merely filters out the
actor-related trace events. Thus, it seems feasible to extent
it to other concurrency models, especially if they use for
instance transactions or object monitors as dynamic scopes,
which would allow to indicate their causal relations.

6.4 Conclusion
The evaluation shows that the Kómpos protocol is abstract
enough to support arbitrary breakpoints and stepping op-
erations independent from a specific concurrency model.
Furthermore, the provided data is generic enough for tools
that are agnostic of the concurrency models as shown with
our system interaction view. However, it remains possible to
build tools specific to a concurrency model by interpreting
the meta data, as we have shown with the actor turn view.

7 Related Work
This section discusses concurrent debuggers and novel IDE
designs that influenced our work or that are closely related.
Debugger protocols similar to ours and their limitations have
been discussed in section 2.1. Generally, their support for
concurrency models is minimal and they do not provide any
facilities for custom breakpoint or stepping types, while the
Kómpos protocol is designed for this purpose.

7.1 Concurrent Debuggers
Debuggers for concurrent and parallel systems have a long
history [McDowell and Helmbold 1989]. This includes sup-
port for breakpoints, stepping, and visualizing of parallel
systems. However, to the best of our knowledge, so far, no
debugger supports a wide range of concurrency models.

REME-D [Gonzalez Boix et al. 2014] is the closest related
work. It is also an online debugger focusing on distributed
communicating event-loop programs, that uses a meta-pro-
gramming API to realize breakpoints and stepping semantics.
Our actor breakpoint and stepping operations are reminis-
cent of REME-D’s ones. However, REME-D’s API is specific
to the actor model, and does not abstract from concurrency
concepts as the Kómpos protocol does.
Erlang8 and ScalaIDE9 support basic debugging of actor

programswith sequential stepping and breakpoints. ScalaIDE
also includes an option to follow a message send and stop in
the receiving actor. However, neither of them attempts to go
beyond this basic debugger functionality.

Zyulkyarov et al. [2010] introduced a debugger for a trans-
actional system. The focus of their work is to ensure that

8Debugger , Ericsson AB, access date: 2017-05-16, http://erlang.org/doc/app
s/debugger/debuggerchapter.html
9Asynchronous Debugger , ScalaIDE, access date: 2017-05-16, http://scala-i
de.org/docs/current-user-doc/features/async-debugger/index.html

the STM implementation does not interfere with the debug-
ging experience, and that stepping over or into transactions
works naturally. Furthermore, they provide mechanisms for
conflict-point discovery and debug-time transactions. Our
work, however, focuses on advanced breakpoint and stepping
semantics. Their advanced debugging mechanisms would be
highly interesting for Kómpos, too.

Early prototypes of the Kómpos debugger were presented
by Torres Lopez et al. [2016] and Marr et al. [2017]. However,
this was only an exploration of initial ideas and did not yet
include any work on the Kómpos protocol.

7.2 Novel IDE Designs
Projects such as the Language Server Protocol,10 which is
implemented by Visual Studio Code, and Monto [Keidel et al.
2016] try to change how we think about integrated devel-
opment environments (IDEs). Instead of using the plugin
approach common to Eclipse or Visual Studio, they provide
support for languages by providing a common protocol to
exchange information for code completion, code errors, and
other common IDE services. We consider their design an
inspiration for this work. However, neither the language
server protocol nor Monto support debugging at this point.

With respect to flexible debuggers, the work of Chiş et al.
[2015] on a debugger framework for domain-specific de-
buggers might be the most advanced. They support domain-
specific breakpoints, stepping operations, and debugger views.
For example, they have a debugger for a parser framework,
which allows to step through the parsing process on the level
of the parser rules instead of the parser implementation. Simi-
larly, they have a debugger for a complex notification system,
which allows stepping through the activations of the sub-
scriptions to notifications instead of working on the basic
notion of method calls and callbacks. Instead of providing a
framework for building debuggers, our work focuses on the
protocol between the debugger and the interpreter. To our
understanding, our protocol supports all required elements
to also support their domain-specific breakpoint and step-
ping operations. However, we do not provide a framework
to build custom debugger interfaces as they do.

8 Conclusion and Future Work
To enable better debugging tools for complex concurrent ap-
plications, we propose the Kómpos protocol, a concurrency-
agnostic debugger protocol. The protocol abstracts from spe-
cific concurrency models to support custom breakpoints,
stepping operations, and visualizations, without requiring
support for the specific concurrency models.

Based on our study of shared-memory andmessage-passing
models, the protocol represents concurrency concepts in
terms of activities, dynamic scopes, and passive entities. It
uses opaque meta data to allow the debugger to determine
10Language Server Protocol, Microsoft, access date: 2017-05-16, https://gith
ub.com/Microsoft/language-server-protocol

11

http://erlang.org/doc/apps/debugger/debugger_chapter.html
http://erlang.org/doc/apps/debugger/debugger_chapter.html
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html
https://github.com/Microsoft/language-server-protocol
https://github.com/Microsoft/language-server-protocol

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

DLS’17, October 24, 2017, Vancouver, Canada Marr et al.

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

where breakpoints or stepping operations are applicable.
The protocol also includes the notion of send and receive
operations to, e.g., visualize concurrent interactions.

To evaluate the protocol, we implemented it in the Kómpos
debugger and SOMns. SOMns supports the five major con-
currency models: threads and locks, communicating event
loops, communicating sequential processes, fork/join paral-
lelism, and software transactional memory. We implemented
21 breakpoints and 20 stepping operations in SOMns for
these models, without requiring any modifications to the
debugger, which shows that the protocol is concurrency ag-
nostic. We also implemented two visualizations. The first one
shows the concurrent interactions independently of the con-
currency models. The second one shows causalities between
actor turns, messages, and their ordering, which is specific
to the communicating event-loop model. This demonstrates
that the protocol is flexible enough to enable advanced de-
bugging tools that are concurrency agnostic, while it remains
possible to build tooling specific to a concurrency model.

Based on this work, existing debugger protocols could be
extended to provide advanced debugging support for con-
current programming, without requiring support for specific
concurrency models. This provides a foundation for better
tooling and debuggers for complex concurrent systems that
combine concurrency models.
For future work, we would like to study how to enable

arbitrary libraries to benefit from such a generic protocol.
The challenge here is to expose the relevant data about con-
cepts and their relation to library methods to the interpreter
so that it can be communicated to the debugger. Especially
in dynamic languages, it needs to be able to expose this
information at runtime.
Further work is also required to make the visualization

scalable to large applications. We need to find ways to ex-
plore complex systems and focus on relevant details, and we
need to investigate ways to provide the relevant data effi-
ciently. Future work also needs to study how to effectively
expose the large number of concurrency-specific debugger
features to users, and whether they help to debug concurrent
applications more effectively.

Acknowledgments
We would like to thank Sander Lenaerts for the implementa-
tion of the actor turn view, and Manuel Rigger and Richard
Roberts for comments on an early draft. Stefan Marr and
Dominik Aumayr were funded by a grant of the Austrian
Science Fund (FWF), project number I2491-N31. Carmen Tor-
res Lopez was funded by a grant of the Research Foundation
Flanders (FWO), project number G004816N.

References
George S. Almasi and Allan Gottlieb. 1994. Highly Parallel Computing (2nd

ed.). Benjamin-Cummings Publishing Co., Inc.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. 1995. Cilk: An Efficient
Multithreaded Runtime System. In Proc. of PPoPP, Vol. 30. ACM.

Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William
Maddox, and Eliot Miranda. 2010. Modules as Objects in Newspeak. In
Proc. of ECOOP. LNCS, Vol. 6183. Springer, 405–428.

Andrei Chiş, Marcus Denker, Tudor Gîrba, and Oscar Nierstrasz. 2015. Practi-
cal domain-specific debuggers using the Moldable Debugger framework.
Computer Languages, Systems & Structures 44, Part A (2015), 89–113.

Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 2016. 43 Years
of Actors: A Taxonomy of Actor Models and Their Key Properties. In
Proc. of AGERE!’16. ACM, 31–40.

Elisa Gonzalez Boix, Carlos Noguera, and Wolfgang De Meuter. 2014. Dis-
tributed debugging for mobile networks. Systems and Software 90 (2014).

Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. 2005.
Composable Memory Transactions. In Proc. of PPoPP’05. ACM, 48–60.

C. A. R. Hoare. 1978. Communicating Sequential Processes. Commun. ACM
21, 8 (1978), 666–677.

Sven Keidel, Wulf Pfeiffer, and Sebastian Erdweg. 2016. The IDE Portability
Problem and Its Solution in Monto. In Proc. of SLE’16. ACM, 152–162.

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Dis-
tributed System. Commun. ACM 21, 7 (July 1978), 558–565.

Stefan Marr, Carmen Torres Lopez, Dominik Aumayr, Elisa Gonzalez Boix,
and Hanspeter Mössenböck. 2017. Kómpos: A Platform for Debugging
Complex Concurrent Applications. (2 April 2017), 2 pages.

Charles E. McDowell and David P. Helmbold. 1989. Debugging Concurrent
Programs. ACM Comput. Surv. 21, 4 (Dec. 1989), 593–622.

Mark S. Miller, E. Dean Tribble, and Jonathan Shapiro. 2005. Concurrency
Among Strangers: Programming in E as Plan Coordination. In Symposium
on Trustworthy Global Computing (LNCS), R. De Nicola and D. Sangiorgi
(Eds.), Vol. 3705. Springer, 195–229.

Chris Seaton, Michael L. Van De Vanter, and Michael Haupt. 2014. Debug-
ging at Full Speed. In Proc. of DYLA’14. ACM, Article 2, 13 pages.

Terry Stanley, Tyler Close, and Mark Miller. 2009. Causeway: A message-
oriented distributed debugger. Technical Report. HP Labs. 1–15 pages.
HP Labs tech report HPL-2009-78.

Samira Tasharofi, Peter Dinges, and Ralph E. Johnson. 2013. Why Do Scala
Developers Mix the Actor Model with other Concurrency Models?. In
Proc. of ECOOP (LNCS), Vol. 7920. Springer, 302–326.

Carmen Torres Lopez, Stefan Marr, Hanspeter Mössenböck, and Elisa Gon-
zalez Boix. 2016. Towards Advanced Debugging Support for Actor
Languages: Studying Concurrency Bugs in Actor-based Programs. (30
October 2016). Presentation, AGERE! ’16.

Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lom-
bide Carreton, Dries Harnie, Kevin Pinte, and Wolfgang De Meuter. 2014.
AmbientTalk: programming responsive mobile peer-to-peer applications
with actors. Com. Lan., Sys. & Struct. 40, 3–4 (2014), 112–136.

Michael Van De Vanter. 2017. Building Flexible, Low-Overhead Tooling
Support into a High-Performance Polyglot VM: Extended Abstract. (2
April 2017), 3 pages. Presentation, MoreVMs’17.

Michael L. Van De Vanter. 2015. Building Debuggers and Other Tools: We
Can "Have It All". In Proc. of ICOOOLPS’15. ACM, Article 2, 3 pages.

Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug
Simon, and Christian Wimmer. 2012. Self-Optimizing AST Interpreters.
In Proc. of DLS’12. 73–82.

Ferad Zyulkyarov, Tim Harris, Osman S. Unsal, Adrían Cristal, and Ma-
teo Valero. 2010. Debugging Programs That Use Atomic Blocks and
Transactional Memory. In Proc. of PPoPP’10. ACM, 57–66.

12

	Abstract
	1 Introduction
	2 Background
	2.1 Debugger Protocols
	2.2 Truffle Debugger: A Language-Agnostic Debugging Framework

	3 Which Concurrency Concepts are relevant for Debugging?
	3.1 Threads and Locks (T&L)
	3.2 Communicating Event Loop Model (CEL)
	3.3 Communicating Sequential Processes (CSP)
	3.4 Software Transactional Memory (STM)
	3.5 Fork/Join Parallelism (F/J)
	3.6 Analysis and Conclusion

	4 A Concurrency-Agnostic Debugger Protocol
	4.1 High-Level Overview of the Protocol Concepts
	4.2 Example: Breakpoints and Stepping for an Atomic Block
	4.3 Detailed Description of the Kómpos Protocol

	5 Implementation
	6 Evaluation
	6.1 Breakpoints
	6.2 Stepping Operations
	6.3 Visualization
	6.4 Conclusion

	7 Related Work
	7.1 Concurrent Debuggers
	7.2 Novel IDE Designs

	8 Conclusion and Future Work
	Acknowledgments
	References

