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Abstract
Just-in-time compilers and their aggressive speculative optimiza-
tions reduced the performance gap between dynamic and static
languages drastically. To successfully speculate, compilers rely on
the program variability observed at run time to be low, and use
heuristics to determine when optimization is bene�cial. However,
some variability pa�erns are hard to capture with heuristics. Specif-
ically, ephemeral, warmup, rare, and highly indirect variability are
challenges for today’s compiler heuristics. As a consequence, they
can lead to reduced application performance. However, these types
of variability are identi�able at the application level and could be
mitigated with information provided by developers. As a solution,
we propose a metaobject protocol for dynamic compilation systems
to enable application developers to provide such information at run
time. As a proof of concept, we demonstrate performance improve-
ments for a few scenarios in a dynamic language built on top of
the Tru�e and Graal system.
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1 Introduction
In object-oriented languages, a program usually consists of objects
(perhaps also classes) and methods which realize the desired be-
havior. In the presence of dynamic dispatching, the concrete types
of objects are o�en known only at run time. Additionally, such
languages typically provide re�ective APIs allowing developers
to observe or intercede with language elements programmatically
while the application is running. All these aspects make the opti-
mization of dynamic languages particularly challenging. However,
just-in-time (JIT) compilation successfully faces many of these chal-
lenges by assuming that the run-time variability of applications is
generally low. For instance, polymorphic inline caches (PICs) [5]
for call sites work well under low variability but their performance
decreases when new types are observed.

JIT compilers rely on heuristics that decide what, when, and
how to optimize. In the absence of mechanisms to interact with
compilers, application developers generally treat them as black
boxes. �is leads to unpredictable performance gains or losses
depending on the heuristics hit rate [9]. For example, a call site
with high variability is not always an issue for PICs. Based on its
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heuristics, an aggressive optimizer can clone (split) a method when
it is called from di�erent sites so that the variability is reduced by
incorporating contextual information [1].

Unfortunately, we found that some use cases do not �t well with
the common optimization heuristics. �ese scenarios present a
special kind of variability exhibiting the following main character-
istics: 1) �ey appear as high variability to JIT compilers resulting
in run-time overhead. 2) Application developers could know the
variability follows a �xed pa�ern, which makes it suitable for op-
timization. 3) �e pa�ern instances are application-speci�c. �is
kind of variability is common in applications that use dynamic
features extensively, for instance, when using proxies for complex
initialization or when performing run-time adaptations such as
object instance migrations.

To mitigate their overhead, compilation heuristics could be
adapted whenever a new case is found. However, this requires
changes to low-level and complex artifacts such as the compiler
and possibly the virtual machine. �is is costly, and gathering the
necessary information to recognize complex variability pa�erns
might also harm the overall application performance. Especially
for variability that is highly application-speci�c, a general solution
at the compiler level might be too complex and may introduce
unacceptable run-time overhead for other applications.

We propose to investigate opening up JIT compilers and behav-
ioral information about programs as part of a comprehensive API
in the form of a metaobject protocol (MOP) [6]. Concretely, we
propose to explore re�ective compilers, i.e., compilers exposing
their capabilities to the language level. Exploiting these capabili-
ties, developers can provide �ne-tune optimizations and mitigate
application-speci�c run-time overheads by providing additional
information to the compiler about a program at run time. �is has
the advantage of enabling custom optimizations with a generic
API, accessible at the language level, and applicable to di�erent
scenarios and applications dynamically.

In the remainder of the paper we �rst provide some background
and discuss the di�erent kind of application-speci�c variability we
detected. �en we describe rei�cations of the compiler behavior
and basic structural elements that could be a�ected by those vari-
ability conditions. Examples of such elements are dispatch chains,
program specializations, application pro�ling, and code spli�ing.
Finally, we present running time reductions in two scenarios ex-
hibiting application-speci�c variability, provide some preliminary
conclusions, and discuss our plans to continue this work.

2 Background
�is section brie�y discusses two basic dynamic language optimiza-
tions as background for the remainder of the paper.
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Dynamic Objects In dynamic languages such as JavaScript, PHP,
or Python, �elds can be added and removed dynamically. Further-
more, the type of values stored in �elds is not known statically.
To optimize the representation of such a dynamic structure of un-
known size and shape, the notions of maps [1] and object shapes [10]
have been proposed. Essentialy, they keep track and cache object
structures and �eld types at run time. Exploiting this informa-
tion enables a record-like representation in memory, where �eld
accesses can be mapped to direct memory accesses.

Dispatch Chains Polymorphic inline caches (PICs) [5] record
type information and cache methods to minimize their lookup over-
head. Dispatch Chains generalize PICs to generic operations, such
as object �eld accesses (for dynamic objects) and metaprogram-
ming, caching arbitrary values [7, 10]. Dispatch Chains rely on the
stability and low variability of run-time behavior. Each element
caches a value (a specialization) and has a guard to test its validity
in the current run-time context. If not valid, the following element
in the chain is tested. Finally, dispatch chains are structured so that
the last element implements the fallback behavior, i.e., the behavior
for the most general case.

3 Handling Application-Speci�c Variability
As programming language implementers and application develop-
ers we have been on both sides of the table. On the one hand, as
implementers we know that a compiler needs as much information
as possible to recognize optimizable pa�erns. On the other hand,
as developers we have dealt with code whose performance has
degraded signi�cantly without a clear reason.

3.1 Motivating Example: Ephemeral Variability
Let us consider an application that periodically walks through the
elements of a list. To make it concrete and simple, suppose the
elements are instances of a Point class and that the application
requests their x �eld. �e code snippet in Smalltalk syntax is:

Example>>#gatherX

↑points collect: [:point | point x]

Now, suppose that for at least one of the points in the list, there
is a proxy protecting the actual point object that has not yet been
initialized. When the �eld read is triggered, the proxy lazily initial-
izes the object and updates the list at the corresponding position.
�is scenario contains what we call ephemeral variability. �is vari-
ability is in the �eld access operation, which refers always to the
same type (Point) with the exception of the �rst iterations where
it also refers to Proxy.

Figure 1 illustrates the challenges this type of variability poses
to a compiler by showing the evolution of the AST representation
of gatherX.1 On the le� we see the output a�er parsing. In the
middle is the AST a�er walking through the �rst point of the list:
the uninitialized read was replaced by a specialization that caches
the memory o�set to look for the x �eld of Point instances. �e
AST remains unchanged until we reach the Proxy in the list and
add another node for caching the o�set for proxies (on the right).
A�erwards, the AST no longer changes.

1 We chose ASTs for illustrative reasons but the main idea is generalizable to other
representations used by speculative compilers.
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Figure 1. Run-time changes in the AST of the gatherX method.

As shown, ephemeral variability a�ects dispatch chains and
thus, performance. In Section 5.2 we show preliminary empiri-
cal evidence of its performance e�ects. In our example, a node
caching Proxy location is at the head of the chain although we
know that proxies will never be observed a�er initialization. �is
phenomenon, which is application-speci�c, can be hard to detect in
a general-purpose JIT compiler. In particular, the compiler cannot
determine when Proxy instances will no longer be observed. How-
ever, this information can be determined by a developer based on
the application behavior. Equipped with the right tools, she could
inform the optimizer about the pa�ern.

3.2 Application-speci�c variabilities
What follows is an informal characterization of di�erent kinds
of variability we have observed in our experiments using Truf-
�eMate as an adaptive platform [3]. While we assume they have
been observed by many VM implementers before, to the best of our
knowledge, they have not been widely documented yet.

Ephemeral Variability: As we illustrated in the motivating ex-
ample, ephemeral variability refers to an increase in variability that
disappears a�er some time, perhaps a program phase, a�er which
the system continues the execution with lower variability. �is
is o�en observable in applications performing adaptations at run
time such as instance migration. Another example is unexpected
inputs that trigger exceptions and error handling. Ephemeral vari-
ability a�ects optimizations based on type pro�ling. Concretely, it
may prevent inlining and other optimizations, because the dispatch
chains will keep information about all previously observed types
(especially in commonly used library functions) while the applica-
tion only needs a subset of them a�er startup.

Warm up Variability: A particular kind of ephemeral variability
that occurs whenever there is a clearly de�ned initial phase where
applications feature highly dynamic behavior, but a�erwards, sta-
bilize and exhibit lower variability. For instance, during startup,
an application might initialize a complex data structure involving
the instantiation of heterogeneous objects and the execution of
complex initialization methods. A�erwards, the application might
merely use the data structure and never execute the initialization
code again. Depending on the time it takes the instance to prop-
erly initialize, the motivating example could also be categorized as
showing warm up variability.

Rare Variability: Some programs have rare but reoccurring vari-
ability in their behavior. Examples can be heterogeneous run-time
values appearing occasionally or behavior triggered by a periodic
task. �is leads to short stretches of execution diverging from stable
behavior, and thus, causing problems for existing heuristics. One
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of the reasons is that the rarely occurring behavior can still block
important optimizations from being performed for the frequently
executed code. So, it might be be�er to avoid optimizing rarely
executed code, and instead keep interpreting it. Moreover, in the
cases where it is still worth optimizing, the dispatch chains would
be contaminated with the last observed values, and a reordering
of the specializations would mitigate this phenomenon. Unfortu-
nately, PICs and other heuristics usually do not take rare variability
into account.

Highly Indirect Variability: �is phenomenon captures variabil-
ity generated in di�erent source locations, which are usually far
from the points where they �nally have an impact. It is usually
observed in applications that make extensive use of frameworks,
libraries, and/or high-order functions. An example is any standard
library method that applies a lambda received as parameter. Dif-
ferent call sites will dispatch di�erent lambdas. To mitigate this
variability JIT compilers usually split (clone) the library method to
enable context-sensitive pro�ling. �is signi�cantly reduces the
length of the dispatch chain and promotes aggressive optimizations
like the inlining of the lambdas. For highly indirect variability,
spli�ing is not su�cient to distinguish di�erent calling contexts
preventing optimization. An example is detailed in Section 5.2.

Summarizing, general purpose JIT compilers are usually unable
to properly recognize the aforementioned variability pa�erns. �e
reason is that to keep them tractable, these compilers pro�le prop-
erties that can be easily detected and monitored while these types
of variability are usually opaque and application-speci�c. As a
consequence, they lead to performance degradation.

4 Towards a Compilation Metaobject Protocol
Application-speci�c variability can potentially be handled by a
compiler if developers provide the proper information at run time.
To do so, we propose the use of re�ective compilers, i.e., compilers
exposing an API to the language level that can be exploited at run
time. In this section, we propose a (not necessarily comprehensive)
set of operations for such an API. We focus on compilation aspects
that may be a�ected by the already presented types of variability.
Concrete examples, along with code illustrating how to use the API,
can be found in Sections 5.1 ands 5.2.

Subsequently, we present the operations based on the entity
starting the communication (i.e., application or compiler). We as-
sume an optimizing compiler that works on methods represented
as ASTs. However, the ideas can also be applied to other represen-
tations, e.g., bytecodes. We reify the essential concepts of ASTs
for dynamic languages: nodes, dispatch chains, and pro�lers. To
connect the base and meta levels, each method has access to its
AST.

4.1 Run-Time Directives from the Application to the
Compiler

Applications can observe or modify the state of a compilation by
using the following operations:

• Compile: force the compilation of a method. Handy to
accelerate warm up times when the developer knows that
the variability is low, especially, a�er a deoptimization. Also
for compiling methods with customized specializations.

• Invalidate: discard the optimized code of a method. �is
is useful whenever compiled code contains specializations
that no longer hold or are blocking optimizations.

• Manage compilation information, covering operations for:
i) Inspecting the run-time AST nodes of a method to an-
alyze its current state (specially its dispatch chains). ii)
Altering the AST. Concretely: ii.a) Add new nodes, use-
ful for customizing specializations ii.b) Reset, reorder, or
remove nodes, in particular, specializations from dispatch
chains. �ese can help to remove pro�le pollution caused
by old phases and/or improve guard execution times (see
one example in Section 5.1).

• Trigger optimizations: force method optimizations such
as spli�ing, inlining, and loop unrolling. Useful when the
compiler heuristics fail to provide the optimal performance.
(See Section 5.2 for an explicit spli�ing example).

• Activate/Deactive pro�lers.

4.2 Run-Time Callbacks from the Compiler to the
Application

�ese operations allow applications to customize how the compiler
responds to compilation events.

• onSpecialization: when a specialization is going to be added
because the current subject’s type has not been observed
before.

• onGuardSucess/onGuardFailure: to inform about the suc-
cess or failure when executing a guard.

• onNodeReplacement: when a node is going to be replaced
with a more speci�c behavior for the current subject’s type.

5 Validation
As a preliminary validation2 of our approach, we implemented al-
most all the compiler directives of the API presented in the previous
section.

Implementation. We implemented the API in Tru�eMate [2], a
Smalltalk VM with comprehensive re�ective capabilities for most
of its components but not its compiler. In Tru�eMate, metaobjects
can be installed either on individual objects or method activation
frames. When installed, they govern the semantics of the interceded
entity. Tru�eMate uses a self-optimizing AST interpreter featuring
dynamic objects and dispatch chains for speculative optimizations.
Preliminary evidence [3] suggests that, in combination with the
Graal [11] JIT compiler, Tru�eMate can run e�ciently.

Experimental Setup. �e benchmarking machine is a quad-core
Intel Core i7-3770, 3.40 GHz with 16 GB RAM, running Ubuntu
with Linux kernel 4.4, and Java 1.8.0 121 with HotSpot 25.121-
b13. For both experiments we ran 400 iterations and report 100
measurements a�er steady state has been reached.

5.1 Ephemeral Variability
We used as baseline the gatherX method presented in Section 3
and execute three variations with subtle di�erences:

1. Instance Migration (IM): One of the points in the list is
wrapped by a proxy as introduced in the motivation exam-
ple.

2Instructions on how to reproduce the experiment can be found at: h�ps://github.
com/charig/Tru�leMATE/tree/papers/ICOOOLPS17

https://github.com/charig/TruffleMATE/tree/papers/ICOOOLPS17
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Figure 2. Steady state execution time for the instance migration
micro benchmark with ephemeral variability.

2. IM+Reset: Same as IM, but a�er the proxy initialization, we
use the compilation API to �nd the �eld reading node of
x, gather its dispatch chain, and trigger a reset (See listing
below).

3. IM+Update: Same to the previous case but instead of reset-
ting the dispatch chain we just remove the specialization
generated by the proxy instance.

Example>>#InstanceMigrationReset

| ast node |

ast ← (Baseline>>#gatherX) compilation.

node ← (ast fieldReadsWithName: 'x') first.

↑node dispatchChain reset.

Results. Con�rming our hypothesis, Figure 2 shows IM is slower
than the baseline a�er stabilization: warm up + compilation. Fur-
thermore, both, IM+Reset and IM+Update show performance boosts
in comparison to IM producing running times similar to the baseline.
�e mean overall results for the iterations of each benchmark are:
Baseline 1234ms , IM 1547ms , IM+Update 1227ms , IM+Reset 1261
ms .

5.2 Highly Indirect Variability
Let us now consider the call to Vector>>collect: in the gatherX
method from the previous example. �e callee is part of the Tru�e-
Mate standard library. Tru�eMate speculates on the block (closure)
received as parameter for optimizing its dispatching and enabling
the JIT compiler to inline it. To illustrate a highly indirect scenario,
suppose now a subtle di�erence with the previous example: we
need to collect both the x and y values from the vector:
Example>>#gatherAndProcessXandY

| xValues yValues |

xValues ← points collect: [:point | point x].

yValues ← points collect: [:point | point y].

self process: xValues and: yValues.

�is example presents highly indirect variability because it calls
collect: twice within the same method (context) but with two
di�erent blocks. Since the context is the same, the (Graal) compiler
heuristics avoid spli�ing collect:.

Benchmarks. We ran the previous example in two di�erent �avors:
Indirect runs exactly the example while Indirect+Split forces the
spli�ing of the second call to collect using the compilation API:
Example>>#splitCollect

| ast send callSite |

ast ← (Example>>#gatherAndProcessXandY) compilation.

send ← (ast messageWithSelector: 'collect:') second.
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Figure 3. Steady state execution time for the splitCollect micro
benchmark with highly indirect variability.

callSite ← send dispatchChain firstSpecialization.

↑callSite split.

Results. Figure 3 shows a reduction in the execution time of In-
direct+Split. �e mean overall results for the iterations of each
benchmark are: Indirect 420ms and Indirect+Split 399ms , resulting
in a performance gain of about 5%. In the case of critical methods,
this simple �ne-tuning at run time appears worth trying.

5.3 Conclusions
�ese preliminary results indicate that a re�ective compiler could
improve the obtained performance of a general-purpose JIT com-
piler by leveraging developers knowledge of the application to
�ne-tune the optimizations. A more comprehensive validation is
still needed to be�er understand several aspects such as the best
applicable scenarios and the concrete limits and drawbacks of the
approach.

6 Related Work
For brevity, this section discusses only decaying invocation coun-
ters [4] and Lancet [9], a recent compilation framework closely
related to our work.

Decaying Invocation Counters. Hölzle proposed that method ac-
tivation counters represent invocation rates instead of counts. He
suggested counters that decay exponentially to avoid the com-
pilation overhead for methods that are not performance critical.
Furthermore, Hölzle proposed to dynamically adapt the decay rate
depending on the stability of the system. �is would mitigate
problems with transient variability such as warm up, rare, and
ephemeral variability. However, this heuristic does not apply to
all issues we identi�ed. Concretely, it would fail whenever an
application phase containing transient behavior executes the corre-
sponding method frequently enough. Our approach complements
compilation heuristics for the cases when they are not enough, by
giving developers the opportunity to amend those scenarios using
a comprehensive language-level API.

Lancet. Recently, Rompf et al. presented the Lancet JIT compiler
framework for Java bytecode that enables programs to control sev-
eral aspects of the JIT compilation process. Lancet features hooks,
used to trigger a prede�ned set of macros whenever a method is go-
ing to be compiled. On top of these macros, Lancet features an API
allowing developers to annotate methods with compilation direc-
tives such as compile, unroll, or freeze (partial evaluate at compile
time). We share the same vision and goals noticing a potential in
connecting a JIT compiler with the application it optimizes. How-
ever there are di�erences in the approaches. While Lancet’s API is
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mainly used at compile time, our API was designed to enable the
inspection and modi�cation of the compilation aspects of a method
at run time. In addition, we focused on reifying aspects regarding
speculative optimizations such as dispatch chains and spli�ing,
while Lancet focused on other aspects such as partial evaluation
and inlining. For instance, to the best of our knowledge Lancet is
not able to deal with our case studies. Lastly, Lancet advocates for
an integration of the compilation directives within the source code,
while we promote the modularization of the optimization aspects
by the use of a MOP.

7 Conclusion
We presented a series of application-speci�c variabilities, namely:
ephemeral, warm up, rare, and highly indirect. We showed how
they may challenge state-of-the-art JIT compilers, leading to perfor-
mance overheads. �ese overheads could be mitigated if application
developers had the means to supply the compiler with additional
information and improve over heuristics. �erefore, we proposed
to make compilers re�ective, enabling the introspection and inter-
cession of optimization-related aspects, for instance, the ability to
manage dispatch chains or force a deoptimization. As a roadmap
to follow, we presented an API covering several aspects of the com-
pilation process, implemented a subset, and obtained signi�cant
overhead reductions in a couple of preliminary scenarios including
application-speci�c variability.

It is worth noting that our approach relies on developers with
advanced knowledge of both, the application speci�cs and compiler
optimizations for dynamic languages. We expect the API to be used
in cases where the application-speci�c variability is known a priori
to block optimizations. Furthermore, because of being re�ective,
we expect also a posteriori usages of the API, i.e., run-time tweaks
for boosting the performance of running systems. On the negative
side, developers might not use the compiler API properly. Wrong
hints and directives given to the optimizer may lead to potential
performance penalties. More comprehensive use cases stressing
the usage of the MOP are needed to analyze its eventual negative
impact.

Concluding, we think re�ective compilers open new perspectives
for run-time adaptive scenarios. �is was already suggested by
the context-oriented programming community [8]. For the near
future, we plan to re�ne, extend, and implement the API completely.
Furthermore, we also plan to evaluate its performance results in the

context of more comprehensive applications to be�er understand
the prerequisites for, and overall impact of, using the compilation
API.
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