
Software↵

Languages.Lab

INHOUDSTAFEL

Kerncijfers kaft

Mijlpalen kaft

Inhoudstafel 3

Voorwoord 5

Innovatie stimuleren in Vlaanderen 7

Overheidsagentschap voor innovatiesteun

Open voor bedrijven en onderzoekscentra

Gedragen door een ervaren team

Samen realiseren we innovatieprojecten 13

Overheidssteun voor innovatie 17

Basisonderzoek stimuleren 21

Innovatiebeleid van de Vlaamse Regering ondersteunen 26

WAT?

WAAROM?

HOE?

agentschap voor Innovatie
door Wetenschap en Technologie

Pagina 3

Many-Core Virtual Machines
Decoupling Abstract From Concrete Concurrency

V
ir

tu
a

l
M

a
c

h
in

e
s

C
o

n
c

u
rr

e
n

c
y

S
o

 M
a

n
y

 M
o

d
e

ls

Stefan Marr, Theo D’Hondt {stefan.marr, tjdhondt}@vub.ac.be http://soft.vub.ac.be/~smarr/research/

E
x

p
e

ri
m

e
n

ts

abstract

for multiple languages

Abstraction by ILs

concurrency support is limited

decouple abstract concurrency models

and concrete concurrency models

what to include in ILs?

how to combine
 the various models?

what are the
fundamental problems?

Locality and Encapsulation?

Approach and Evaluation

The Manycore RoarVM

but...

a VM has to:

 from and
hardware operating systems
 from and from and
hardware operating systemshardware operating systems

ECMA-335
4th Edition / June 2006

Common Language
Infrastructure (CLI)

Partitions I to VI

• powered by fast JIT compilers, and great GCs
 • foundation for multi-language VMs
 • allow to reuse existing infrastructure
• require huge investments
 • reuse is economically necessary

• VM Intermediate Languages (ILs)
 • often defined as bytecodes
 • expressive abstraction for various target languages
 • state of the art is very diverse

Abstraction Model #Register Execution Mode Length in Byte #Opcodes

CLI Bytecode stack 0 - variable >= 1 217

CPython Bytecode stack 0 switch variable 1 or 3 102

Dalvik VM Bytecode register threaded variable >= 2 218

Dis VM Bytecode memory-to-memory 0 - variable 1 - 33 158

Erlang Bytecode register 1024 threaded, JIT fixed 4 148

JVM Bytecode stack 0 - variable >= 1 201

Lua Bytecode register 255 switch fixed 4 38

Mozart Bytecode register-memory threaded variable 4 - 24 97

Parrot Bytecode register switch, threaded, JIT variable >= 4 >1200

PHP Bytecode register-memory threaded fixed 76 136

Rubinius Bytecode stack 0 JIT variable 4 -16 89

Ruby 1.8 AST stack 0 switch - - 105

Ruby 1.9 Bytecode stack 2 threaded variable >= 32 77

Self Bytecode stack 0 JIT fixed 1 17

Squeak Bytecode stack 0 switch, threaded variable 1 or 2 71

TraceMonkey Bytecode stack 1 threaded, JIT variable >= 1 234

V8 AST - - JIT - - 38

Model Threads/Locks CSP Actors Data-flow

IL Support Marginal High-level High-level Marginal

StdLib Low/high-level High-level High-level High-level

• VM support is minimal
 • only one specific concurrency model is supported
 • only few ILs provide notion of concurrency
 • no comprehensive abstraction

Stefan Marr, Michael Haupt, and Theo D'Hondt
Intermediate Language Design of High-level Language Virtual Machines:
Towards Comprehensive Concurrency Support
In: Proc. of the 3rd Workshop on Virtual Machines and Intermediate Languages, ACM, October (2009)

• abstract concurrency models are defined by languages or libraries
• used by application developers

• wide range of models supported by VM is necessary
 • implementing unsupported models on top is hard
 • restrictions hinder efficient implementation
 • support at VM-level allows reuse and optimization

concrete concurrency models are provided by the underlying system

Single-Core
• preemptive OS threads
• instruction-level
 parallelism
• VM challenges
 • deep cache hierarchies
 • cache-consciousness
 required

Multi-Core
• uniform memory access
• native support for
 thread-level parallelism
• and cache coherency
• locality and cache hierar-
 chy must be considered
 • avoid cache thrashing

Many-Core
• non-uniform memory
 access architectures
• can have explicit core-
 to-core communication
• very diverse designs
 • with/out cache coher.
 • explicit inter-core com.

Intel Banias Intel Nehalem IBM Cell B.E.

there are various ways to express concurrency
and solutions are domain-specific A Foundation for Concurrency Support in Multi-Language VMs?

Exploring the Design Space:

Stefan Marr et al.
Virtual Machine Support for Many-Core Architectures: Decoupling Abstract From Concrete Concurrency Models
In: 2nd International Workshop on Programming Languages Approaches to Concurrency and Communication-cEntric Software, York, UK, March (2009)

Hans Schippers, Tom Van Cutsem, Stefan Marr, Michael Haupt, and Robert Hirschfeld
Towards an Actor-based Concurrent Machine Model
In: Proc. of the 4th Workshop on the Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and Systems, ACM (2009)

earlier experiments: an IL for threads/locks, and an IL for Actors

• A Smalltalk VM for multi- and manycore systems
• runs on the 64-core TILE architecture
• runs on standard x86 systems
• supports Linux and OS X
• released under the Eclipse Public License at
 http://github.com/smarr/RoarVM

Research
In cooperation with David Ungar and Sam Adams from

On a TILEPro64
• 64 cores on a single chip
• explicit core-to-core
 communication
• small caches
• shared coherent memory

Non-Uniform
Memory Access

Shared Mutable State

in
 s

om
e

fo
rm

 e
xp

lic
it

or
 im

pl
ie

d
in

 la
ng

ua
ge

s

Lo
ca

lit
y

Encapsulation

none

C/C++/Java

AmbientTalk
E vats
Actors

CSP

flat
partitioning

k-level
hierarchy

dynamic
hierarchy

immutability bit readability bit predicate-based

Clojure Agents
X10

STM

UPC
CAF

RoarVM

CUDA
OpenCL

Nested Actors
Active Objects

CoBoxes

1.
2.
3.

Top-Down from a Language Perspective

X10 inter-place
operations

Nesting of
Actors or CoBoxes

Clojure Agents

Abstract from experiments
and extend the VM model

• Language engineering effort
 • Avoid duplication in different
 language implementations
 • Trade-off to VM complexity
• Performance benefits
• Memory/cache utilization

Assess and evaluate
benefits of VM Support

Our Platform for Experiments

Implement relevant concepts
on-top of the RoarVM

N
U

M
A

 is
 th

e
do

m
in

ati
ng

 h
ar

dw
ar

e
ch

ar
ac

te
ri

sti
c

Partitioned Global Address Space
locality explicit in shared-memory

Non-shared Memory Languages
natural fit for NUMA

protecting and isolating shared state

avoiding mutable shared state
perhaps allowing immutable shared state

Is the notion of locality
inevitable for a VM?

Can a VM support this better
by some notion of Encapsulation?

• shared coherent memory

E
x

p
e

ri
m

e
n

ts

