vig - : 11 lVie -+
Jecoupling Abstract From Concrete Concurrency

abstract . concurrency support is limited what to include in ILs? I.ocalityandﬂtcapsulaﬁon?

there are various ways to express concurrency , , _
. : . A Foundation for Concurrency Support in Multi-Language VMs?
and solutions are domain-specific

* VM support is minimal Exploring the Design Space:
e only one specific concurrency model is supported

()]
e only few ILs provide notion of concurrency Data Par allelism dynamic Nested Actors

: Active Objects
. . hierarch
* no comprehensive abstraction y CoBoxes

ECSPA Actors
mDetermmlstlc Iom Calculus
=i Non-Deterministic Data-flow

Mutex Scatter

Non-shared Memory

w:Reactive Programming flat / UPC AmbientTalk

Spawn Futures . e CAF Clojure Agents E vats
hared Memory partitioning e = X rctors

CSP

k-level

hierarchy / OpenCL

n
@

ty
Commit

Compare and Swap

Petri-Nets
Locality

Tim Lindholm « Frank Yellin
The Java" Virtual

fro I I I Machine Spedification a n d ({ [r Y
Second Edition |

. Microsoft "—-") :
hardware operating systems TAVANap ereanc. MO art
- b g Locket,

Model Threads/Locks CSP Actors Data-flow < Vector R
Fork/ oin =
Tr!Calculus 5 caSROT

Barriers
Kernel
Token

Work Stealing

Activi
Semaphore

Inbox |
Monitor

IMD
Map /Reduce
o
Data Dependency
allel

i
¢

Task Pa
Synzgr
Wait

aces
0 tlon
ecelve
free W

Sp
oniza

Message Passin
[Stl‘eams Matcgl Atomic Incremeg

Store Conditional ! N,
ore condaitiona q’ - ‘ /

- []
immutability bit readability bit predicate-based
Encapsulation

IL Support Marginal High-level High-level Marginal STM

ple

StdLib Low/high-level High-level High-level High-level

Remote Reference:

Process Cal

earlier experiments: an IL for threads/locks, and an IL for Actors

ﬂi. Stefan Marr, Michael Haupt, and Theo D'Hondt
~Intermediate Language Design of High-level Language Virtual Machines: - Stefan Marr et al
Aobe Towards Comprehensive Concurrency Support A Virtual Machine Support for Many-Core Architectures: Decoupling Abstract From Concrete Concurrency Models
In: Proc. of the 3rd Workshop on Virtual Machines and Intermediate Languages, ACM, October (2009) Adobel |n: 2nd International Workshop on Programming Languages Approaches to Concurrency and Communication-cEntric Software, York, UK, March (2009)

A Towards an Actor-based Concurrent Machine Model
Aobe In: Proc. of the 4th Workshop on the Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and Systems, ACM (2009)

for multiple languages a VM has to: how to combine Approach and Evaluation

decouple abstract concurrency models _ Top-Down from a Language Perspective
’Scala jp\ E. “ IronRuby a the varlous mOdels X10 inter-place

™ — e abstract concurrency models are defined by languages or libraries Tyesenates e e operations
Y pg’[hOﬂ Java a %Uﬁ@ﬁgﬁh@m y y languag Implement relevant concepts

e used by application developers) o on-top of the RoarVM

ﬂi. Hans Schippers, Tom Van Cutsem, Stefan Marr, Michael Haupt, and Robert Hirschfeld

Clojure Agents
Nesting of

‘ o Clojure IronPython ‘ J— Actors or CoBoxes

Threads and Locks Actors Data-flow

e Specon . ” Abstract from experiments

Second Edition

n | and extend the VM model

I POP I PUSH I LOAD ISPAWN?I WAIT? | LOCK? ICOMMIT?I

e powered by fast JIT compilers, and great GCs E— e Language engineering effort

e foundation for multi-language VMs v A 4 by VM | o IAvoid duplicaltion intd{_Ifferent
- . . ® anguage impliementations
e allow to reuse existing infrastructure wide range of models supported by 'S hecessary Assess and evaluate gUage Imp

: : : . : e Trade-off to VM complexity
e require huge investments * |mpleme.nt.|ng un.supportgo! mosjels on top IS_ hard benefits of VM Support e Performance benefits
e restrictions hinder efficient implementation

e reuse is economically necessary R e Memory/cache utilization
e support at VM-level allows reuse and optimization :

Ny
- Abstraction by ILs and concrete concurrency models what are the = The Manycore RoarVM

* VM Intermediate Languages (ILs) concrete concurrency models are provided by the underlying system I

e often defined as bytecodes L fundamental pIObIemS?

e expressive abstraction for various target languages |
e state of the art is very diverse | | s the notion of locality

inevitable for a VM?
CLI Bytecode stack 0- variable >= 1
CPython Bytecode stack Oswitch variable 1 or 3

Dalvik VM Bytecode register ocothreaded variable >= 2

Our Platform for Experiments

e A Smalltalk VM for multi- and manycore systems
' e runs on the 64-core TILE architecture
e runs on standard x86 systems
e supports Linux and OS X
e released under the Eclipse Public License at
http://github.com/smarr/RoarVM

bytecodeCounts

Shared Mutable State

Dis VM Bytecode memory-to-memory 0- variable 1 - 33
Erlang Bytecode register 1024 threaded, JIT fixed 4

JVM Bytecode stack 0- variable >= 1 Single_core MUlﬁ‘Core Many_core

Lua Bytecode register 255 switch fixed 4 e preemptive OS threads e uniform memory access * non-uniform memory
Mozart Bytecode register-memory oo threaded variable 4 - 24 e instruction-level * native support for access architectures
Parrot Bytecode register oo switch, threaded, JIT variable >= 4 parallelism thread-level parallelism e can have explicit core-
PHP Bytecode register-memory oo threaded fixed 76 f e VM challenges e and cache coherency to-core communication
Rubinius Bytecode stack 0JIT variable 4 -16 e deep cache hierarchies e locality and cache hierar- e very diverse designs

Ruby 1.8 AST stack Oswitch - - e cache-consciousness chy must be considered e with/out cache coher.
Ruby 1.9 Bytecode stack 2threaded variable >= 32 required e avoid cache thrashing e explicit inter-core com.
Self Bytecode stack 0JIT fixed 1

Squeak Bytecode stack Oswitch, threaded variable 1 or 2 .
TraceMonkey Bytecode stack lthreaded, JIT variable >= 1
V8 AST - -JIT - -

but...

bytecodeCounts
min: 0
max: 347K g
rotal: 934K 50
g 167K 49

49

512
545

On a TILEPro64

® 64 cores on a single chip

e explicit core-to-core
communication

e small caches

e shared coherent memory

N [Users/smarr/Projects/IBM-RVM/rvm-thr|

Non-shared Memory Languages
natural fit for NUMA

protecting and isolating shared state

in some form explicit or implied in languages

Partitioned Global Address Space avoiding mutable shared state
locality explicit in shared-memory perhaps allowing immutable shared state

In cooperation with David Ungar and Sam Adams from

Non-Uniform Can a VM support this better ——
Memory Access by some notion of Encapsulation? = ESS7E ResearCh

Intel Banias Intel Nehalem IBM CeII B.E.

NUMA is the dominating hardware characteristic

Universitei u)é%%&é%@g_mb Stefan Marr, Theo D’Hondt {stefan.marr, tjdhondt}@vub.ac.be http://soft.vub.ac.be/~smarr/research/

Brussel

¥

