ViE -

Decoupling

Abstract

om Concr

VAE

ete

Concurrency

abstract <

from and
hardware operating systems

for multiple languages
EScala % é)) IronRuby 3

@ python jva @ A ironScheme

@ Clojure IronPython

* powered by fast JIT compilers, and great GCs
 foundation for multi-language VMs
* allow to reuse existing infrastructure

* require huge investments
e reuse is economically necessary

_ Abstraction by ILs

* VM Intermediate Languages (ILs)
 often defined as bytecodes
* expressive abstraction for various target languages
o state of the art is very diverse

cu Bytecode stack o-
CPython Bytecode stack Oswitch
Dalvik VM Bytecode register othreaded

variable >= 1
variable 1 or 3
variable >= 2

Dis VM Bytecode memory-to-memory o- variable 1 - 33

concurrency support is limited

* VM support is minimal
 only one specific concurrency model is supported
* only few ILs provide notion of concurrency
¢ no comprehensive abstraction

& r=

Microsoft <——)
NS wmma LY moqart
Model Threads/Locks CSP Actors

Data-flow

IL Support | Marginal High-level High-level | Marginal

StdLib Low/high-level High-level High-level High-level

a VM has to:

decouple abstract concurrency models

e abstract concurrency modesl are defined by languages or libraries
 used by application developers

Throacs and Locks Datafon

* wide range of models supported by VM is necessary
¢ implementing unsupported models on top is hard
« restrictions hinder efficient implementation
e support at VM-level allows reuse and optimization

and concrete concurrency models

concrete concurrency models are provided by the underlying system

what to include in ILs?

there are various ways to express concurrency

Data Parallelism

x
CSP; Actors _ .~

Deterministic Join Calculus
Non-Deterministic Data-flow

on-shared Memory
et Rg’?"c"(ive Programming
Shared Memory
Message Passing

Streams mawh Awmic increment
o coniiionsl

Petri-Nets
.
1sm

Task Pa::gllel

ronization

Eeceive
t-free

le Spaces

Process Calculig|
Tuy
Syncl 5
Wail

how to combine
the various models?

Threads and Locks s Actors csp Oatafon

[T 7or [rusn [vomo [swmme] warrs | roewr [eommre] -]

T]

will result in a
< methodology

extending ILs

for shared memory: fuzzy/split-phase barriers

languages build on to

MPI Coanle

Barrers Barrers

Habanero$

Phasers.

[For [s [sonni e [mexs e o] oo |

Centralized Blocking Tree Centralized
arrier Barrer Barrier Barrler Barrer

application-specifc optimal implementation srategies

other experiments:
an IL for threads and locks, and an IL for Actors

* A Smalltalk VM for many-core systems
e runs on the 64-core TILE64 chip

e runs on standard Intel systems
 supports Linux and OS X

st

In cooperation with David Ungard and Sam Adams from

Research

= our hardware

for the validation of our research we can use
a wide spectrum of state of the art technology

q e Bytecode register 1024threaded, I fixed 4

Bytecode stack o- variable >= 1
Bytecode register 255switch fixed 4
Mozart Bytecode register-memory othreaded variable 4 - 24
eoswitch, threaded, JIT variable >= 4
PHP Bytecode register-memory oothreaded fixed 76
Rubinius Bytecode stack ot
Ruby 1.8 stack Oswitch
Ruby 1.9 stack 2threaded

Parrot Bytecode register

variable 4 16

variable >= 32
self stack ot fixed 1
Squeak stack Oswitch, threaded variable 1 or 2
TraceMonkey Bytecode stack 1threaded, JIT
ve AST - -

variable >= 1

Single-Core
« preemptive OS threads
« instruction-level
parallelism
@™ . v challenges
« deep cache hierarchies
« cache-consciousness
required

Intel Banias

Apple MacPro
*2CPUs

« 4 cores per CPU

« 2 threads per core

TILEPro64

* 64 cores

« explicit core-to-core
communication

Multi-Core

« uniform memory access

« native support for
thread-level parallelism

« and cache coherency

« locality and cache hierar-
chy must be considered
« avoid cache thrashing

Intel Nehalem

Many-Core

« non-uniform memory
access architectures

« can have explicit core-
‘to-core communication

« very diverse designs
« with/out cache coher.
 explicit inter-core com.

18M Cell B.E

« small caches
« shared coherent memory

+ complex cache and
memory hierarchy

Vrije
Universiteit
Brussel

b Stefan Marr, Theo D’Hondt {stefan.marr, tjdhondt}@vub.ac.be http://soft.vub.ac.be/~smarr/research/

