
Modelling, Verification and Evolution of Software

M VESoSoftware↵
Languages.Lab

Many-Core Virtual Machines
Decoupling Abstract From Concrete Concurrency

V
ir

tu
a

l
M

a
c

h
in

e
s

C
o

n
c

u
rr

e
n

c
y

S
o

 M
a

n
y

 M
o

d
e

ls

Stefan Marr, Theo D’Hondt {stefan.marr, tjdhondt}@vub.ac.be http://soft.vub.ac.be/~smarr/research/

E
x

p
e

ri
m

e
n

ts

abstract

for multiple languages

Abstraction by ILs

concurrency support is limited

decouple abstract concurrency models

and concrete concurrency models

what to include in ILs?

how to combine
 the various models?

will result in a
 methodology

extending ILs

our VM

our hardware

but...

a VM has to:

 from and
hardware operating systems

ECMA-335
4th Edition / June 2006

Common Language
Infrastructure (CLI)

Partitions I to VI

• powered by fast JIT compilers, and great GCs
 • foundation for multi-language VMs
 • allow to reuse existing infrastructure
• require huge investments
 • reuse is economically necessary

• VM Intermediate Languages (ILs)
 • often defined as bytecodes
 • expressive abstraction for various target languages
 • state of the art is very diverse

Abstraction Model #Register Execution Mode Length in Byte #Opcodes

CLI Bytecode stack 0- variable >= 1 217

CPython Bytecode stack 0switch variable 1 or 3 102

Dalvik VM Bytecode register threaded variable >= 2 218

Dis VM Bytecode memory-to-memory 0- variable 1 - 33 158

Erlang Bytecode register 1024threaded, JIT fixed 4 148

JVM Bytecode stack 0- variable >= 1 201

Lua Bytecode register 255switch fixed 4 38

Mozart Bytecode register-memory threaded variable 4 - 24 97

Parrot Bytecode register switch, threaded, JIT variable >= 4 >1200

PHP Bytecode register-memory threaded fixed 76 136

Rubinius Bytecode stack 0JIT variable 4 -16 89

Ruby 1.8 AST stack 0switch - - 105

Ruby 1.9 Bytecode stack 2threaded variable >= 32 77

Self Bytecode stack 0JIT fixed 1 17

Squeak Bytecode stack 0switch, threaded variable 1 or 2 71

TraceMonkey Bytecode stack 1threaded, JIT variable >= 1 234

V8 AST - -JIT - - 38

Model Threads/Locks CSP Actors Data-flow

IL Support Marginal High-level High-level Marginal

StdLib Low/high-level High-level High-level High-level

• VM support is minimal
 • only one specific concurrency model is supported
 • only few ILs provide notion of concurrency
 • no comprehensive abstraction

Stefan Marr, Michael Haupt, and Theo D'Hondt
Intermediate Language Design of High-level Language Virtual Machines:
Towards Comprehensive Concurrency Support
In: Proc. of the 3rd Workshop on Virtual Machines and Intermediate Languages, ACM, October (2009)

• abstract concurrency modesl are defined by languages or libraries
• used by application developers

• wide range of models supported by VM is necessary
 • implementing unsupported models on top is hard
 • restrictions hinder efficient implementation
 • support at VM-level allows reuse and optimization

concrete concurrency models are provided by the underlying system

Single-Core
• preemptive OS threads
• instruction-level
 parallelism
• VM challenges
 • deep cache hierarchies
 • cache-consciousness
 required

Multi-Core
• uniform memory access
• native support for
 thread-level parallelism
• and cache coherency
• locality and cache hierar-
 chy must be considered
 • avoid cache thrashing

Many-Core
• non-uniform memory
 access architectures
• can have explicit core-
 to-core communication
• very diverse designs
 • with/out cache coher.
 • explicit inter-core com.

Intel Banias Intel Nehalem IBM Cell B.E.

there are various ways to express concurrency for shared memory: fuzzy/split-phase barriers

other experiments:

Stefan Marr et al.
Virtual Machine Support for Many-Core Architectures: Decoupling Abstract From Concrete Concurrency Models
In: 2nd International Workshop on Programming Languages Approaches to Concurrency and Communication-cEntric Software, York, UK, March (2009)

Hans Schippers, Tom Van Cutsem, Stefan Marr, Michael Haupt, and Robert Hirschfeld
Towards an Actor-based Concurrent Machine Model
In: Proc. of the 4th Workshop on the Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and Systems, ACM (2009)

an IL for threads and locks, and an IL for Actors

• A Smalltalk VM for many-core systems
• runs on the 64-core TILE64 chip
• runs on standard Intel systems
• supports Linux and OS X

Research
In cooperation with David Ungard and Sam Adams from

for the validation of our research we can use
a wide spectrum of state of the art technology

Apple MacPro
• 2 CPUs
• 4 cores per CPU
• 2 threads per core
• complex cache and
 memory hierarchy

TILEPro64
• 64 cores
• explicit core-to-core
 communication
• small caches
• shared coherent memory

Barriers Clocks
Habanero

Phasers
MPI
Barriers

Centralized Blocking
Barrier

Centralized
Barrier

Dissemination
Barrier

Tree
Barrier

Tournament
Barrier

languages build on top

application-specific optimal implementation strategies

