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* powered by fast JIT compilers, and great GCs
 foundation for multi-language VMs
* allow to reuse existing infrastructure

* require huge investments
e reuse is economically necessary

_ Abstraction by ILs

* VM Intermediate Languages (ILs)
 often defined as bytecodes
* expressive abstraction for various target languages
o state of the art is very diverse
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concurrency support is limited

* VM support is minimal
 only one specific concurrency model is supported
* only few ILs provide notion of concurrency
¢ no comprehensive abstraction

& r=

Microsoft <—— )
NS wmma LY moqart
Model Threads/Locks  CSP Actors

Data-flow

IL Support | Marginal High-level  High-level | Marginal

StdLib Low/high-level  High-level High-level High-level

a VM has to:

decouple abstract concurrency models

e abstract concurrency modesl are defined by languages or libraries
 used by application developers

Throacs and Locks Datafon

* wide range of models supported by VM is necessary
¢ implementing unsupported models on top is hard
« restrictions hinder efficient implementation
e support at VM-level allows reuse and optimization

and concrete concurrency models

concrete concurrency models are provided by the underlying system

what to include in ILs?

there are various ways to express concurrency
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how to combine
the various models?
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application-specifc optimal implementation srategies

other experiments:
an IL for threads and locks, and an IL for Actors

* A Smalltalk VM for many-core systems
e runs on the 64-core TILE64 chip

e runs on standard Intel systems
 supports Linux and OS X
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In cooperation with David Ungard and Sam Adams from

Research

= our hardware

for the validation of our research we can use
a wide spectrum of state of the art technology
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Single-Core
« preemptive OS threads
« instruction-level
parallelism
@™ . v challenges
« deep cache hierarchies
« cache-consciousness
required

Intel Banias

Apple MacPro
*2CPUs

« 4 cores per CPU

« 2 threads per core

TILEPro64

* 64 cores

« explicit core-to-core
communication

Multi-Core

« uniform memory access

« native support for
thread-level parallelism

« and cache coherency

« locality and cache hierar-
chy must be considered
« avoid cache thrashing

Intel Nehalem

Many-Core

« non-uniform memory
access architectures

« can have explicit core-
‘to-core communication

« very diverse designs
« with/out cache coher.
 explicit inter-core com.
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« small caches
« shared coherent memory

+ complex cache and
memory hierarchy
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