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Abstract
JavaScript is the most popular programming language for
client-side Web applications, and Node.js has popularized
the language for server-side computing, too. In this domain,
the minimal support for parallel programming remains how-
ever a major limitation. In this paper we introduce a novel
parallel programming abstraction called Generic Messages
(GEMS). GEMS allow one to combine message passing
and shared-memory parallelism, extending the classes of
parallel applications that can be built with Node.js. GEMS
have customizable semantics and enable several forms of
thread safety, isolation, and concurrency control. GEMS are
designed as convenient JavaScript abstractions that expose
high-level and safe parallelism models to the developer. Ex-
periments show that GEMS outperform equivalent Node.js
applications thanks to their usage of shared memory.

Categories and Subject Descriptors D.1.3 [Software]:
Programming Techniques—Concurrent Programming

Keywords JavaScript, Node.js, Generic Messages.

1. Introduction
In contrast to other languages, JavaScript was not de-
signed to express parallelism. This is a clear limitation for
cloud computing and data-intensive applications; domains
in which the language has been popularized by Node.js [46].

Bringing parallel execution to a non-parallel language
is challenging. Beyond few notable research efforts (e. g.,
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the RiverTrail [28] data-parallel model), WebWorkers [4]
is the only parallelism model for client-side and server-
side JavaScript. The WebWorkers model is inspired by Ac-
tors [11], and is based on share-nothing fully-isolated paral-
lel entities (i.e., workers) exchanging data via asynchronous
messages. Although such form of share-nothing parallelism
is a good fit for, e. g., stateless Web services, it prevents de-
velopers from taking full advantage of the shared memory
available in modern server-class multicore machines. More-
over, share-nothing parallelism forces developers to explic-
itly partition and distribute data [36], and requires the us-
age of external services such as Memcached [1] when shared
state is needed.

For data-intensive applications and so-called microser-
vices [48], shared memory can be employed efficiently in
several ways. For example, it can be used to implement
in-memory caching for scale-up services [14], to optimize
in-memory parallel processing for data-intensive applica-
tions [50], as well as to optimize the communication mech-
anisms used by microservices frameworks such as Amazon
Lambda [5] via in-memory data transfer and zero-copy mes-
saging.

Shared-memory parallel programming, however, is hard,
as it requires developers to deal with data races and syn-
chronization [36]. For Node.js, explicit shared-memory pro-
gramming models such as the one of Java might be even
more problematic, as programmers are used to—and exist-
ing libraries are built for—the event-based race-free model
enforced by WebWorkers.

In this paper, we introduce a new parallel programming
abstraction called Generic Messages (GEMS), specifically
designed to enable selected forms of shared-memory paral-
lelism in the context of the WebWorkers model. Informally,
GEMS are a new form of messages that can be exchanged
between workers to provide controlled access to shared-
memory programming abstractions. Rather than enabling a
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specific parallel programming model, generic messages are
customizable and can be used to expose shared memory to
workers in several ways. In particular, GEMS enable safe
parallel programming models for WebWorkers, without ex-
posing developers to low-level issues such as data races.

This paper makes the following contributions:

(1) It describes the Generic Messages model, a new parallel
programming abstraction to enable shared-memory par-
allelism for share-nothing, fully-isolated models such as
WebWorkers.

(2) It describes how Generic Messages can be used to im-
plement six types of GEMS corresponding to six well-
known parallel programming models. Each GEM en-
ables shared-memory programming in Node.js by allow-
ing developers to extend existing message-based appli-
cations with programming abstractions that can enforce
thread-safe access to shared memory.

(3) It describes the implementation of the GEMS model in
the context of Node.js, and we evaluate several Node.js
applications using GEMS, highlighting the performance
benefits, along with other benefits such as thread safety,
over plain Node.js applications based on WebWorkers.

This paper is structured as follows. In Section 2 and Sec-
tion 3 we motivate the GEMS programming model, which
we present in detail in Section 4 and Section 5. In Section 6
and Section 7 we evaluate the performance of GEMS. Sec-
tion 8 discusses related work, and Section 9 concludes.

2. Isolated Communicating Workers
The only model for parallel execution supported by Node.js
is based on isolated parallel entities, called workers, which
communicate using asynchronous message passing. One of
the reasons for this is JavaScript’s single-threaded language
design. Since JavaScript is single-threaded, the Node.js run-
time (and the underlying Google V8 virtual machine [3])
are single-threaded as well. Consequently, workers do not
support shared memory, neither in the programming model
(since each worker has a fully isolated memory space), nor at
the level of the runtime system (because internal data struc-
tures are not thread-safe and the garbage collector requires
the heaps of workers to be disjunct). In Node.js, workers
can be used via a module called Cluster [8], which pro-
vides the basic support for messaging, as well as a Node.js-
specific mechanism to let multiple workers listen on the
same HTTP/TCP port. The Cluster module is designed to
scale-up Node.js services within a single multicore machine,
and performs automatic load balancing between workers lis-
tening on the same TCP port.

Share-nothing parallelism is an ideal model for sev-
eral applications, e. g., scatter/gather parallelism [17]. For
cloud and data-intensive workloads, however, the absence
of shared memory can be a limitation. For some problems,
shared memory is a more natural solution [45], and forcing

developers to model every interaction with asynchronous
message passing increases complexity when atomicity and
consistency are required. For instance, since Node.js work-
ers cannot share any resource at runtime, they need to use
external systems such as Memcached [1] whenever shared
state is needed. Although such caching systems offer prop-
erties such as distribution (over a cluster) and failure toler-
ance, they also result in additional data lookup overheads.
As a consequence, Node.js applications often make use of
a per-process, replicated, temporary cache to store data in
the Node.js memory space (e.g., using external modules
such as TTL [9]) in order to reduce the overall Web ser-
vice latency. Especially for data-intensive applications, the
overhead of moving data between Node.js processes and an
external caching system can be prohibitive. Instead, a simple
and efficient shared-memory solution is desirable to enable
scalability within a single multicore machine, as it would
remove the need to replicate objects in the memory space
of the external caching service. Moreover, it would not re-
quire Node.js developers to program against a foreign API.
From the perspective of the runtime system, shared memory
can have benefits, too. For example, web services and big
data applications can take advantage of shared in-memory
data structures to reduce latency and improve data locality,
avoiding the overhead and the complexity of replication sys-
tems that need to guarantee data consistency for non-shared-
memory systems. Specifically for Node.js, in-memory com-
munication can also be used to optimize message passing be-
tween workers, to avoid the current send-by-copy approach,
which requires JSON data marshalling for every message.

GEMS enable the use of shared memory both implicitly
and explicitly. They can be used to optimize message-based
communications by implicitly using shared-memory mech-
anisms [25, 41] (without modifying the user-level worker
API), and can also be used to expose safe, high-level, paral-
lel programming models that combine message passing and
shared memory.

3. GEMS to the Rescue
Informally, a GEM is a runtime mechanism to mediate ac-
cess to a shared object graph between two or more parallel
workers. GEMS can be considered a form of software capa-
bility [40] which defines how data are shared, and how they
can be accessed. The way such access is controlled is defined
by a GEM itself, and cannot be altered by the workers. Thus,
a GEM can give workers controlled and thread-safe access
to a shared object graph. GEMS are exposed to workers in
the form of standard JavaScript objects, for which they can
read and write properties, execute function calls, and per-
form other common operations.

A Motivating Example. As a concrete example for GEMS,
let us consider a data scraping application that processes text
to compute the frequency of keywords in a file. A paral-
lel Node.js implementation for this example is depicted in
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——————————— Master ———————————
1 var registry = new BigObject();

2 var keys = ["some","Important","words"];

3 // send data to workers

4 workers.multicast(keys)

5 .scatter(registry)

6 // callback when all workers replied

7 .gather( f u n c t i o n (results) {

8 var total = accumulate(results);

9 console.log('result is' + total);

10 });
——————————— Workers ———————————

1 // callbacks for multicast and scatter

2 worker.on('multicast ', f u n c t i o n (msg) {

3 keys = msg;

4 })

5 .on('scatter ', f u n c t i o n (msg) {

6 var registry = msg;

7 var result = {};

8 // scan received part of document

9 f o r ( var k i n keys) {

10 var total = 0;

11 f o r ( var token i n registry)

12 i f (registry[token] == keys[k])

13 total++;

14 result[keys[k]] = total;

15 }

16 worker.reply(result);

17 });

Figure 1. Node.js-compatible implementation of a Word-
count benchmark.

Figure 1. In this application, a first worker called “master”
initially owns the data for the document to be scanned (pre-
viously read from a file) and the keys to be searched for.
To enable parallel processing, the master partitions the in-
put data, and sends each partition to parallel workers. The
document is partitioned by the master using the scatter

function, while the keys are copied to each worker using the
multicast function. Finally, the gather function is called
once all the results from each worker have been collected.

The example highlights some of the drawbacks of the
worker model in Node.js: each time the master has to ex-
change data with the workers, it has to deep copy the data
from its memory space to the memory space of the receiver.
Here, this means that the keys array and the registry ob-
ject are replicated for each worker. Copying and transferring
the data reduces the performance of the application and in-
creases its memory footprint. Intuitively, a shared-memory-
based implementation would minimize communication by
sharing only a reference to registry and to the keys ar-
ray between workers. Sharing a direct pointer to such data,
however, would expose workers to potential race conditions,
as workers will be granted the right to perform concurrent
writes.

——————————— Master ———————————
1 // create three Gems

2 var atomic = require('atomic -gem'),
3 part = require('partitioned -gem'),
4 readonly = require('read-only-gem'),
5 registry = readonly.create(

6 new BigObject());

7 var keys = part.create(

8 ["some","Important","words"]);

9 var finalResult = atomic.create({});

10 // multicast three Gems to the workers

11 workers.multicast(

12 registry , keys , finalResult)

13 .gather( f u n c t i o n () {

14 // no need for post-processing

15 console.log(finalResult);

16 });
——————————— Workers ———————————

1 // callback executed when the

2 // three Gems are received

3 worker.on('multicast ', f u n c t i o n (

4 registry , keys , finalResult) {

5 f o r ( var k i n keys.subset())

6 f o r ( var token i n registry)

7 i f (registry[token] == keys[k])

8 finalResult.atomic( f u n c t i o n () {

9 finalResult[k] =

10 finalResult[k]+1 || 1;

11 });

12 worker.reply('done!');
13 });

Figure 2. An implementation of a Wordcount benchmark
that benefit from using multiple GEMS.

Such race conditions can be avoided using GEMS for
each of the two objects to be shared (i. e., registry and
keys). Specifically, the two objects can be shared between
workers using a GEM granting (and enforcing) read-only
access. In this way, workers can receive direct access to
the two shared objects, minimizing the data-transfer over-
head. The code in Figure 1 can already use such kinds
of GEMS without any changes, since no write operations
are performed on the received messages. To this end, the
scatter function would need to create a GEM for the
registry and keys objects, and use it for the communi-
cation rather than copying and partitioning the two objects.

Advanced Semantics for GEMS. GEMS can have more
advanced semantics than read-only protection. They can ex-
pose arbitrary APIs for controlling access to the shared ob-
ject graph, and can provide selective access rights to shared
objects in multiple forms, for instance by granting read and
write access only to a subset of the elements or properties in
a shared object graph. Another version of the example using
other, more advanced, types of GEMS is depicted in Fig-
ure 2. In this second implementation, the keys array is sent
to all workers using a GEM that enforces partitioned access
control. This GEM enriches the object graph that is being
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shared with the subset function as an additional API, which
can be used by the worker to claim read and write access
limited to a partition of the shared keys array. By invoking
subset, the GEM automatically assigns (in a thread-safe
way) a subset of the elements of keys for exclusive access
to a single worker, ensuring that other workers trying to read
from (or write to) one of the elements of the array will not be
allowed to do so. The GEM in the example not only provides
partitioned access to keys, it also enforces it: any attempt
to access any non-granted element of the array, i. e., not ob-
tained via subset, results in an exception. The example also
makes use of a second kind of GEM, the results object.
This GEM enriches the object capabilities with the atomic
API, which can be used to perform a sequence of operations
on the shared object graph in a thread-safe way. The object
is initially empty, and is used in this example to accumu-
late the final result of the scraping, thus avoiding the final
accumulation operation on the master, as it was done in the
Node.js implementation in Figure 1. The GEMS described
in this example ensure thread safety for the GEM user, i. e.,
the worker. The way thread safety is achieved and concretely
implemented is GEM-specific, as every GEM can provide
different safety guarantees.

4. GEMS Design and Implementation in
Node.js

A GEM is a new type of JavaScript object that can be ex-
changed between workers via message-based interactions
to enable shared-memory parallel programming. The GEM
model does not specify how shared memory should be ex-
posed to workers. For example, it can be introduced im-
plicitly, as in the example of Figure 1, where concurrency
control mechanisms are transparently encapsulated in the
GEM at the granularity of property reads and writes. Shared-
memory programming can also be exposed explicitly, by
providing custom APIs such as the atomic function de-
scribed in Figure 2. Such a model-agnostic design makes it
possible to trade off convenience, performance, and safety at
a high granularity.

At the high level, a GEM is a combination of the follow-
ing two elements:

(1) A shared object graph, that is, an object graph to be
shared with multiple workers. The elements composing
the graph can have any valid JavaScript value (e.g., Num-
bers and Strings). However, they can be associated only
with one GEM, i.e., it is not possible for two GEMS to
reference the same object graph, neither directly nor in-
directly.

(2) Dynamic sharing semantics, which controls how the
shared object graph can be accessed in parallel by multi-
ple workers.

With Node.js being a share-nothing framework, GEMS can
initially be exchanged only by an explicit message that is

Shared	
graph

(protected)
		Meta	API			

Gem	state

gem.atomic(func2on()	{
				gem['prop']	=	...
});

Public	API
Sync
API

Gem	implementa,on Gem	user	(i.e.,	workers)

(CAS,..)
(onGet,..)

(atomic,..)

Figure 3. Overview of GEMS’ internal structure.

sent from a Node.js worker (called the GEM owner) to all
the workers that need access to it in the parallel application.
Using message passing as the core mechanism for sharing
GEMS across workers allows developers to add shared-
memory parallel programming selectively, without breaking
existing applications. GEMS are not available by default,
but they can be imported in the form of Node.js modules.
In the following sections we describe the API used to define
such modules together with the concrete internal structure of
GEMS.

4.1 GEM Definition and Creation
Generic messages are designed to be reusable. To this end,
the model provides a specific API that is only available
for the implementation of a GEM, but is not accessible by
GEM users. Generally, for the implementation of a new
type of GEM, a deep understanding of concurrency is re-
quired. Thus, we clearly distinguish the expert role of im-
plementing GEMS, from the role of a GEM user who builds
high-level applications based on readily available libraries
of GEMS but does not need to be a parallel-programming
expert. Therefore, we clearly distinguish between defining a
new type of GEM, and the creation of a GEM instance (of a
given type). To enforce the desired separation of roles, these
built-ins are only available for Node.js module developers,
which is detailed in Section 4.3.

New types of GEMS can be defined using the Gem.define
built-in function. Gem.define is used as in the following
example:

// Define a new type of Generic Message

var readOnly = Gem.define(gemConfiguration);

// Export it to Node.js

module.exports.gem = readOnly;

New types of GEMS can be created only from within
Node.js modules definitions. This implies that new GEM
types cannot be created explicitly by Node.js applications,
but must be created and packaged in the form of a module.
This also implies that the semantics of a GEM cannot be al-
tered by its users, and ensures that the thread-safety guaran-
tees provided by a GEM cannot be altered during its usage.
The define function expects an object to be provided as ar-
gument. This object is called the GEM configuration, and is
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a special JavaScript object that is used to specify the runtime
semantics of the GEM for parallel and concurrent access.

To import a GEM of a given type in a Node.js applica-
tion, an instance of the GEM has to be created. This can be
done by importing a GEM using the standard Node.js pack-
age management system. After the GEM module has been
loaded, a new instance of the GEM can be obtained by call-
ing Gem.create, as described in the following example:

// import the gem from a module

var readOnly = require('read-only-gem');
// object to be used as the 'shared graph '
var content = {some:0,values:1};

// create an instance of the gem

var gem = readOnly.create(content);

// send the gem message to workers

f o r ( var w i n workers)

workers[w].send(gem);

// object and gem are distinct

content.some++;

gem.some == content.some; // false

// this gem enforces strict

// read-only access on its state

gem.some++; // throws exception!

After the GEM has been created, it can be shared with
workers via message passing. The GEM constructor accepts
an optional input parameter (the content object in the ex-
ample). This object can be used as the initial state of the
GEM, and corresponds to the state that will be shared with
all the workers that receive the GEM. The content object is
optional, and other GEMS can have a GEM-specific way
to allocate and modify the state to be shared. When such
an initial shared object is provided, its entire object graph is
copied, and the copied graph is made private to the GEM.
The copying mechanism is called JSON copy, as it relies on
the semantics of JSON object serialization [7]. Specifically,
a JSON copy of a JavaScript object graph corresponds to
a new object graph that has been built by (1) encoding the
original graph in JSON format, and by (2) de-serializing the
encoded graph to a new JavaScript object. As a consequence
of JSON copy, the GEM-private shared object graph owns
only the raw data and the structure of the original object
graph. It neither includes functions nor JavaScript-specific
features such as the object prototype chain of the original
object graph. Moreover, cycles in the shared object graph
are removed as they are not supported by JSON.

Using JSON data as the format for the initial state to be
shared between workers has two main motivations. First, it
ensures that the same shared object graph cannot be used to
create two different GEMS, because the JSON copy removes
cycles and performs a deep copy of the initial shared object
graph. Second, GEMS can be used as a “drop in” replace-
ment in message-based applications, as exchanging a GEM
or a JSON message between two workers has the exact same
semantics. Note that we chose JSON copy semantics also to

avoid introducing new semantics that JavaScript developers
would need to understand when using GEMS.

Creating a GEM with an initial object graph to be shared
is optional, as performing a JSON copy of an object graph
before transferring it as a message can be sometimes expen-
sive. GEMS can also support a different pattern that does
not require JSON-copying the object. Consider the follow-
ing example of a GEM:

// import the gem from a module

var ownedGem = require('owned-gem');
// create and populate the gem with values

var gem = ownedGem.create();

// writes allowed before the gem is sent

f o r ( var i i n someValues)

gem[i] = someFunctionOf(someValues);

// share the gem with some workers

f o r ( var w i n workers)

workers[w].send(gem);

// once shared , the gem becomes read-only

gem.some++; // throws an exception!

In this example, the GEM is created with an empty initial
state, which is populated by the GEM owner as fields are
added. The GEM owner has the right to alter the GEM state
as long as the GEM is not shared with any workers. In this
way, the runtime overhead of JSON-copying a GEM from
an existing object into a GEM-private memory space can be
avoided in an efficient way, as the GEM-private object graph
is built incrementally. In Section 5 the implementation of this
as well as other GEMS will be provided, describing how the
transfer mechanism is encoded in the GEM configuration
object.

4.2 GEM Configuration Object
A GEM can be considered a safe container mediating ac-
cesses from any worker to the shared object graph it protects.
The semantics of the GEM under concurrent access is spec-
ified in the configuration object used to create it. Different
configuration objects can encapsulate different semantics,
and therefore enable different parallel programming models.
Examples of configurations are read-only access, multiple-
readers/single-writer access, or memory partitioning. As the
example in Section 3 suggests, GEMS can be used to imple-
ment even more advanced forms of data sharing, which we
discuss in Section 5.

The high-level architecture of a GEM configuration is de-
picted in Figure 3, while a detailed overview of its compo-
nents is provided in Figure 4. At its core, a GEM configura-
tion is an object containing the following components:

(1) GEM public API: a GEM-specific API that is accessible
to all the Node.js workers receiving the GEM.

(2) GEM meta API: a customizable metaobject protocol
API [33] used by all the workers using the GEM.

(3) GEM state: global state accessible to all GEMS in all
workers, and local state private to the worker that receives
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GEM Public API
Any arbitrary function that can be called by work-
ers that received the GEM. An example is the
atomic function used by Atomic GEMS.

GEM Meta API Meta-object-protocol handling the following
events:

onGet Trap called for every property get operation.
onSet Trap called for every property set operation.
onCreate Trap called every time a new instance of the GEM

is created.
onFirstImport Trap called the very first time a GEM of a given

type is imported as a module.
onSend Trap called before a GEM is sent from one worker

to another.
enum, define, ... Other traps used to access properties in the object

graph.

GEM State Every GEM has access to some internal state
that can be used to specify how concurrency is
handled.

Local State that is private to a single GEM instance.
Shared State that is specific to a GEM instance and is

shared between all the workers that have access
to the GEM (including the GEM shared object
graph).

Static State that is allocated at the moment the GEM is
imported. It can be both worker-local and shared,
and can be accessed by all the GEMS in the sys-
tem.

Figure 4. Overview of the GEM API and state.

a GEM. State is private, and can be accessed only by the
GEM public and meta API.

By combining these three components, a GEM can enable
multiple forms of data sharing. Since GEMS are exposed
to workers via message passing, a crucial aspect concern-
ing their semantics regards the data involved in transferring
a GEM from its owner to a receiving worker. After its cre-
ation, transferring a GEM operates as follows:

• The GEM owner creates a new GEM instance and sends
a reference of it to the receiving worker.

• The new GEM instance holds a private reference to the
shared object graph. The reference is not accessible to the
worker user code, and can be accessed only by the GEM
(meta and public) API.

• The new GEM instance also holds a local state. The value
of the local state is specified in the GEM configuration.

Given this model, sending a GEM only has the cost of an
object allocation and of a reference transfer. In Figure 5 and
6, the configuration objects of two example GEMS are de-
scribed. The GEMS provide support for different forms of
concurrent access to workers, and make use of all the fea-
tures described before. In particular, the GEM in Figure 5
presents the implementation of a read-only GEM, while Fig-
ure 6 corresponds to the implementation of a partitioned
GEM, i. e., a GEM that grants exclusive read and write ac-
cess to disjoint ranges of a shared array to multiple work-

ers in parallel. As the synchronization logic of both GEMS
is not directly exposed, they can be used safely by workers
without any risk of data races. In the following sections, we
detail the internals of GEMS using Figure 5 and 6 as driving
examples.

4.2.1 GEM Private State
The shared object graph used to create a GEM is always
accessible from the GEM public API and from the meta API
by accessing the this.shared object. As an example, this
is done in Figure 6 at Lines 32 and 41, where its content is
accessed by the workers. GEMS also provide an additional
mechanism to access a shared utility state that is different
from the shared object graph itself. This can be done by
using the internal built-in property. An example usage
of this property is to store some metadata that needs to be
shared between workers. In Figure 6 this is used to share
a counter keeping track of the ranges already assigned to
workers. Finally, GEMS also provide an additional type of
internal state, called static, which is allocated only once,
when the GEM is imported into the application for the first
time. The motivation for this type of GEM state (not shown
in the figure) is to enable worker-local state that survives
the allocation of a single GEM instance. Static state can be
used in several ways, for example to keep track of all the
GEMS used by a worker. The shared object graph as well as
the object stored in the internal built-in property are not
exposed to the worker, which cannot obtain access to them
not even using reflection.

GEM-local state can be specified using a property named
local. The property can be used by the GEM worker to
model worker-local state. An example usage is depicted in
Figure 6, where local state is used to keep track of the
ranges in which a worker is granted access. When a partition
is acquired, the range is checked to prevent unauthorized
accesses to the shared object.

4.2.2 GEM Public API
Any GEM can have an optional public API to expose high-
level programming models to workers. Such API implemen-
tations have the following characteristics:

• Every function defined in the API has direct access to the
GEM shared object graph as well as to the GEM state.
Access is granted by the GEM runtime via specific built-
in objects (e. g., this.shared).

• Every function has access to a private built-in module
called Sync, which provides concurrency control primi-
tives, e. g., atomic compare and swap (CAS) operations.

The public API can use the Sync object to build a concur-
rency control mechanism for the GEM. For example, Fig-
ure 6 defines the getRangeAPI. Similarly to the GEM state,
the public API is declared by initializing the public prop-
erty with an object that provides the API functions. In the
example, the getRange function is exposed to every worker

This is the author copy of the paper. DOI: 10.1145/2983990.2984039 6 2016/10/25

http://dx.doi.org/10.1145/2983990.2984039


———————- ReadOnly GEM configuration ———————–
1 var readOnlyGem = {

2 meta: {

3 onGet : f u n c t i o n (property) {

4 // All reads are allowed

5 r e t u r n t h i s .shared[property];
6 },

7 onSet : f u n c t i o n (property , value) {

8 throw "Read-Only access violation";

9 }

10 }}
——————————– Worker usage ——————————–

1 // Gems received: 'input ' is read-only ,

2 // and 'result ' is partitioned

3 worker.on('message ',
4 f u n c t i o n (input , result) {

5 // Access read-only and part. gems

6 result.getRange( f u n c t i o n (from , to) {

7 f o r ( var r = from; r < to; r++)

8 result[r] = someFunctionOf(

9 input[r], result[r]);

10 });

11 // The onSet meta API prevents

12 // accesses outside of "getRange"

13 result[42] = 42; // throws an except.

14 });

Figure 5. A GEM implementing read-only access for mul-
tiple workers to a shared object, and a worker receiving a
ReadOnly GEM and a Partitioned GEM for parallel pro-
cessing.

that has access to the GEM. getRange takes a lambda func-
tion as argument, which is executed atomically. When exe-
cuted, the lambda function has full read and write access to
the given range of indexes on the shared object graph. In-
ternally, the Sync object is used to implement a thread-safe
atomic counter that is acquired before executing the func-
tion.1

The GEM public API model enforces encapsulation and
protection: workers can neither access the shared object
graph nor the Sync object unless they are explicitly exposed
by the public API of an “unsafe” GEM.

Having access to the Sync and the shared objects enables
the implementation of custom synchronization policies. By
using only the public API, a GEM can implement any form
of shared-memory concurrent data structure. It is the respon-
sibility of the GEM developer to decide which level of safety
and consistency is to be exposed to users. In our implemen-
tation, the Sync object provides the concurrency semantics
of the Java Memory Model [38]. This means, memory ef-
fects can be reasoned about with happens-before relation-
ships. The Sync object implements the following low-level
facilities:

1 The example is simplified for brevity.

———————– Partitioned GEM configuration ———————-
1 var partitionedDynGem = {

2 internal: {

3 // an atomic counter

4 idxCounter : Sync.newAtomicLong(0),

5 },

6 // index range for which the worker

7 // has exclusive access

8 local: { range : {from:-1, to:-1} },

9 public: {

10 getRange: f u n c t i o n (lambda) {

11 var idx = t h i s .internal
12 .idxCounter

13 .atomicIncrement(range);

14 t h i s .local.from = idx;

15 t h i s .local.to = idx+range;

16 lambda(from , to);

17 t h i s .local.to = -1;

18 t h i s .local.from = -1;

19 }

20 },

21 meta: {

22 onCreate : f u n c t i o n (shared) {

23 i f (!isTypedArray(shared))

24 throw "this gem supports "

25 + "only index-based arrays"

26 }

27 onGet : f u n c t i o n (property) {

28 i f (parseInt(property) >=

29 t h i s .local.from
30 && parseInt(property) <

31 t h i s .local.to) {

32 r e t u r n t h i s .shared[property];
33 } e l s e
34 throw "Out-of-bound access";

35 },

36 onSet : f u n c t i o n (property , value) {

37 i f (parseInt(property) >=

38 t h i s .local.from
39 && parseInt(property) <

40 t h i s .local.to) {

41 t h i s .shared[property] = value;

42 } e l s e
43 throw "Out-of-bound access!";

44 }

45 }}};

Figure 6. A GEM implementing exclusive access for mul-
tiple workers to array partitions.

• Atomic operations: fetchAndAdd, compareAndSet. Com-
mon atomic operations implemented in hardware, as well
as access to thread-local storage.

• Concurrent access: load, store, and has. Primitive oper-
ations enforcing a happens-before relation between ac-
cesses on the shared object. They correspond to volatile
operations, according to the Java Memory Model (JMM)
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The choice of the Java Memory Model is arbitrary, and
based on our choice to implement GEMS in an engine on top
of the Java Virtual Machine (JVM). In principle, it would be
possible to extend the GEMS model to support other mem-
ory models and operations. This would affect the number
and the type of GEMS that could be developed, but not the
GEMS model itself. Using the JMM for GEMS is further
discussed in Section 6, where we highlight the main conse-
quences of such design choice.

4.2.3 GEM Meta API
GEMS can define a metaobject protocol [33] through a cus-
tom meta API, to implement fine-grained access and concur-
rency control at the level of a single object property, prevent-
ing unauthorized accesses. Figure 5 depicts the onGet and
onSet functions as an example of the meta API usage. In the
worker usage part of the figure, the meta API is used to spec-
ify implicit custom operations to be executed by the GEM
upon property read and write accesses. This ensures that all
the properties of the object are accessed only in combination
with the getRange API. Other attempts to access the GEM
correspond to a misuse of the getRange API, and result in
an exception (Line 12). Besides the two functions onGet and
onSet, other meta functions (also called traps [47]) to inter-
cept any form of property access to the shared object graph
can be specified, e. g., to intercept a property delete oper-
ation. Furthermore, the model supports traps related to the
lifetime of a GEM such as onCreate, which is called when
the GEM is first allocated, and onSend, which is executed
before a GEM is transferred from one worker to another one.
A summary of all the possible meta functions supported by
the model is depicted in Figure 4. Functions defined in the
meta API have the same properties of functions defined in
the public API. In particular, they can access the shared ob-
ject graph via this.shared and they have access to the low-
level Sync built-in.

4.3 Thread Safety and GEMS Programming
The runtime semantics of GEMS is specified using a low-
level API that can be used to expose arbitrary parallel pro-
gramming models to workers. Such API (e. g., the Sync and
shared objects) is private, and workers receiving a GEM
cannot directly access unsafe primitives such as, e.g., CAS
operations or locks. Despite being thread-safety the main
motivation for GEMS, the GEM model does not explicitly
prevent the creation of arbitrary unsafe GEMS. The reason
for this design choice is that some power users might still
need to use unsafe GEMS for certain tasks (e.g., to per-
form low-overhead logging of events without strict consis-
tency requirements). We rely on the Node.js community to
create and design new GEMS which could introduce novel
programming models that could benefit specific Node.js ap-
plications.

As discussed earlier, the internal GEM programming
model requires a deep understanding of concurrency. Thus,

GEM name Description
ReadOnly Every worker has read-only access to all ele-

ments of the shared object graph. Write attempts
cause an exception.

Owned A worker has exclusive access to all elements of
the shared object graph. Concurrent accesses by
other workers cause an exception.

Partitioned Workers have read/write access to disjoint sub-
sets of elements of the shared object graph. At-
tempts to read or write outside of the partition
cause an exception. The partition is assigned
statically.

Partitioned-dyn Same as Partitioned, but the partition assigned
to each worker is defined dynamically by the
GEM, e. g., to enable load balancing.

Atomic-LK Workers have read/write access to every ele-
ment of the shared object graph. The GEM pro-
vides an API for thread-safe access implemented
with a lock. Attempts to access the shared object
graph without owning the corresponding lock
cause an exception.

Atomic-STM Same as Atomic-LK, but the GEM enables con-
current access using an STM.

Figure 7. Overview of the GEMS discussed in Section 5.

we expect the roles of GEM developers and GEM users
to be different. GEM users will typically import existing
GEMS into their applications as they need to share state
between workers in a safe way, but they will rarely de-
velop GEMS themselves. To emphasize this distinction, the
GEMS implementation is designed so that new GEMS can
only be exposed to Node.js applications in the form of exter-
nal Node.js modules. A Node.js user cannot directly create
new types of GEMS. This is analogous to how the Node.js
ecosystem supports native extensions using languages other
than JavaScript (e. g., C++): such extensions cannot be ex-
plicitly accessed by Node.js applications, and needs to be
exposed to JavaScript using a pre-packed module. In the
case of GEMS, this means that the configuration object and
API of a GEM can be specified only from within Node.js
modules, and not by Node.js applications using the GEM.
To enforce such model, we rely on the existing Node.js pack-
age management system for the distribution of GEMS, and
we ensure that a GEM’s semantics cannot be altered after
the GEM is imported into an application. In this way, any
Node.js user can import existing GEMS in their application
without having to create themselves a new type of GEMS
when they want to share some application-specific data be-
tween workers. Ideally, Node.js developers should just im-
port existing GEMS into their applications in the way Java
developers use libraries such as java.util.concurrent.

5. Parallel Programming with GEMS

This section discusses examples of GEMS enabling safe
programming models. Some of these GEMS are designed
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to specifically address server-side workloads. An overview
is provided in Figure 7.

5.1 ReadOnly and Owned GEMS

Since fully-isolated message passing is the default parallel
programming model in Node.js, the first GEM extending it
provides parallel read-only access to shared data for multiple
workers. The GEM enforces at runtime that workers access-
ing it can only perform read operations on the protected ob-
ject. When a worker attempts to write to the shared data, the
GEM throws an exception instead. We call this a ReadOnly
GEM. An example of its usage and of its internal struc-
ture has been discussed in Section 3 and in Figure 1. The
GEM relies only on the meta API for intercepting read and
write operations, and does not expose any additional public
API. From the worker’s perspective, the GEM behaves like
a normal JavaScript object that has been received via mes-
sage passing. However the worker has no direct access to
the underlying object, as it only received a GEM. Thanks to
the JSON copy mechanism used to build the object graph of
the GEM, this enables to optimize existing message-based
applications just by employing read-only GEMS rather than
normal messages. This is possible as long as the object re-
ceived (resp. sent) by a worker is only read. This scenario is
common for message-passing applications, as in many par-
allel applications the sender of a message does not mod-
ify it afterwards, and the receiver usually reacts to the re-
ceived message by performing some computations and sub-
sequently generates a new message.

For the case that write access is necessary, we can intro-
duce another type of GEM—similar to the ReadOnly one—
called Owned GEM. Such type of GEM can be used to en-
able read and write access to a shared object for a single
worker at a time. In other words, the GEM can be used to
implement a mechanism of ownership delegation to ensure
that while a worker is operating on it, no other workers can
access it. This type of GEM is implemented using only the
meta API, by performing a single CAS operation to acquire
the ownership on an object on the first access, and by regis-
tering in the GEM-local state a pointer to the current thread
owning the GEM. The following is an example of the meta
API for property writes:

f u n c t i o n onSet(property , value) {

i f ( t h i s .local.owner !=

Sync.currentThread())

throw "Cannot access this gem "

+ "from another thread.";

t h i s .shared[property] = value;

}

5.2 Partitioned GEMS

The ReadOnly and Owned GEMS supplement message
passing by enabling more data parallel applications on
Node.js. However, they do not enable arbitrary “read-after-

write” parallel access, and therefore limit the class of par-
allel applications that they could support. To cover more
applications, the Partitioned GEM introduced in Section 3
can be used. This GEM can be implemented using policies
and APIs different from the ones discussed in Section 3.
For example, the partitioning can be either static (i. e., done
at GEM creation time) or dynamic (i. e., implemented by
the GEM itself). This kind of GEM can also be used to
build programming models in the form of global partitioned
address space [19], or more generically can be used to im-
plement scatter/gather computations [17].

5.3 Atomic GEMS

While Partitioned GEMS enable safe shared-memory paral-
lelism, it is not always possible to define disjoint partitions,
so that some computations remain better expressed by other
abstractions. For these computations, we can introduce the
Atomic GEM which enables concurrent read and write ac-
cess to all elements of the shared object graph. To ensure
thread-safety, the GEM provides a public API that workers
must use for concurrent accesses. Misuse of the API results
in an exception. The following is an example usage of the
GEM:

// Receive the gem from somewhere

var gem = ...; var index = 42;

// get read/write access on it

var value = gem.atomic( f u n c t i o n () {

// --- Transaction begin

i f (gem[index] // log Gem read

== undefined) {

// gem write: add to 'redo' log

gem[index] = new Value();

}

r e t u r n gem[index]; // log gem read

// --- Transaction end.

// --- Retry if aborted.

});

// access from outside of the

// 'atomic ' block is forbidden

// and throws exception

var wrongAccess = gem[index];

The GEM provides the atomic function as its explicit
API, which can be called to obtain safe access to the shared
object graph. Once called, operations on elements of the
GEM can be performed safely. Furthermore, read or write
accesses are only possible through the atomic function. The
meta API is used by the GEM to throw an exception when
a worker attempts to perform a read or write operation out-
side of the atomic function call. The comments in the code
correspond to the (implicit) invocations to a Software Trans-
actional Memory runtime (STM) that is implemented to en-
sure atomicity for this GEM. Since the GEM throws an ex-
ception when accessed from outside of the transaction, the
STM implementation can enforce strong atomicity [27], be-
cause non-transactional code cannot access the shared object
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graph. STM is only one of the possible internal implementa-
tions for this GEM. For our evaluation we have implemented
it using the TLRW STM algorithm [22], as well as a lock-
based implementation (called Atomic-LK). The STM im-
plementation is based on a lightweight usage of reader/writer
locks, while the lock-based implementation is based on in-
order acquisition of locks. A comparison of the scalability
and performance of these two approaches is out of the scope
of this paper.

6. Implementation in Graal.js
The GEMS model requires a Node.js engine with multi-
threading support to enable multiple isolated workers to al-
locate shared objects in a common memory space. Since the
Node.js runtime does not provide a common memory space,
as discussed in Section 2, we based our implementation
on a modified version of the Graal.js engine [49], a fully-
compliant ECMA6 implementation of Node.js running on
the JVM. Being based on the JVM, Graal.js can spawn inde-
pendent workers as Java threads, leveraging the existing Java
heap as common memory space. JavaScript workers still
guarantee isolation however, although each JavaScript ob-
ject is allocated in the JVM heap. Implementing the GEMS
model using the V8 engine (used in Node.js) would also be
possible, but would require modifications to the garbage col-
lector of the engine, which does not support concurrent allo-
cation of objects from multiple “Isolates” (using V8’s termi-
nology).

Graal.js is a state-of-the-art JavaScript execution engine
based on a self-optimizing AST interpreter that is compiled
to highly optimized machine code via partial evaluation of
the AST nodes performed by the Graal [49] just-in-time
compiler.

We modified the Graal.js AST interpreter to support
GEMS’ meta API. The JSON copy of the (optional) initial
object graph of a GEM is implemented using an algorithm
with the semantics of JSON encoding and decoding.2 Af-
ter the object graph has been copied, each of the objects in
the new graph that does not correspond to a primitive value
(i. e., objects and arrays literals) is wrapped with Proxy ob-
jects [47] that enforce the GEM meta API. This makes it
possible to ensure that all objects in a newly-created graph
will be accessed using the GEM API. As the full object
graph of the shared object is JSON-copied when a GEM is
created (and the resulting copy is private to the GEM), it is
not possible to have two object instances referenced by two
distinct GEMS at the moment the GEM is created.

Compared to ECMA6 Proxy objects, the Proxy objects
used to implement the GEM meta API have a simpler se-
mantics. They provide only onGet, onSet, and other common

2 The object is created with a copying algorithm that is semantically equiv-
alent to the combined call JSON.parse(JSON.stringify(object)) on
the object to be shared, and corresponds to the normal way objects are ex-
changed between workers in Node.js.

access traps (e.g., has), whereas ECMA6 proxies feature a
richer set of traps that can be used to model other JavaScript-
specific aspects such as object creation and extensibility. The
reason for this design is that ECMA6 proxy objects can be
used to model the interaction with any JavaScript object,
whereas GEM traps model only the interaction (i.e., read-
ing and writing of properties) with the GEM shared object
graph, which has the JSON semantics described before. A
second reason for such design is that GEMS do not need
to support the full semantics of ECMA6 proxies (which is
very rich and can be used to express complex meta-object
protocols). For example, the ECMA6 standard specifies that
the return value of a property get trap is checked against the
property descriptor of the object handler (if any) to ensure
that the value returned by the trap invocation is compati-
ble with the value specified in the object’s property descrip-
tor [6]. Supporting such semantics for GEM objects is not
needed, because GEM shared objects do not have property
descriptors, since they are JSON object graphs.

The implementation of the GEMS meta API in Graal.js
is based on a common basic proxy implementation that is
shared between ECMA6 proxies and GEMS. The imple-
mentation of ECMA6 proxies adds to such common imple-
mentation the additional needed runtime semantics, which
is not needed for GEMS. The proxy objects used for GEMS
have the following characteristics:

• Their traps never change. Once a GEM is created, it is
not possible to change its set/get traps anymore.

• The traps encode the full semantics of the meta-object
protocol that a specific GEM is implementing, and no
extra checks have to be performed on other aspects of the
shared object protected by the GEM nor on the return
value of a GEM invocation.

By sharing the basic proxy mechanisms, the runtime sup-
port and the optimizations by Graal.js for proxy objects can
be leveraged by GEMS, too. In addition, the engine applies
the following two optimizations utilizing the specific char-
acteristics of GEMS:

• Since GEM traps for reading or setting a property never
change, they can be inlined very aggressively for each
property access operation.

• Since the traps encode the entire semantics of the meta
protocol of a GEM, no extra runtime checks have to
be performed on the values returned after the trap exe-
cution. In other words, they can be considered like any
other JavaScript function, with the additional advantage
that they are monomorphic, as their body never changes.
This enables all optimizations performed by the Graal.js
runtime to be performed on GEMS as well, transparently.

Graal.js modifications. Overall, the modifications required
to support GEMS in Graal.js were very localized, as their
design enables GEMS to benefit from most of the optimiza-
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tions that a modern JavaScript engine already performs for
property accesses (e. g., polymorphic inline caching [29])
and function calls. For example, because the GEM traps are
constant, inline caches always cache the GEM trap func-
tion at each property access. As a result, the Graal com-
piler assumes most of the GEM traps to be constant for the
monomorphic case, and performs very aggressive inlining,
thus enabling other optimizations (e.g., partial escape analy-
sis) for the entire compilation unit (e.g., a function using the
GEM). Such optimizations are not specific to the GEMS
model, but are required to guarantee the minimal runtime
overhead of GEMS (cf. Section 7). Without such optimiza-
tions, the GEMS model would be impractical, as the over-
head for accessing object properties would be too high. An-
other consequence of the GEMS design in combination with
such optimizations is that the impact on the compiled code
size depends almost entirely on the size of the GEM traps:
for the ideal case (i.e., when the trap function only read-
s/writes a property), the machine code produced by Graal
is close to the one of a normal property lookup, since Graal
can remove all the function calls and temporary allocations.
Of course, the overhead may grow for GEMs with complex
internal logic.

Supporting the Java Memory Model. When a GEM is
accessed concurrently by two or more Node.js workers, a
definition of an happens-before relationship is needed. Since
our implementation is based on the Graal.js engine (that is, a
Java-based JavaScript engine) we rely on the Java Memory
Model to model the semantics of concurrent accesses to the
GEMS’ shared object graph. JavaScript applications which
do not use GEMS are not affected by this design at all.

The main consequence of this design choice is that ac-
cesses to properties of the GEM shared object without syn-
chronization have the same undefined observable behav-
ior of concurrent non-volatile accesses to Java fields. Con-
versely, accessing the object graph using any synchroniza-
tion primitive (e.g., incrementing a volatile value atomically)
has the same guarantees that the same synchronization prim-
itive would provide in a Java application. The way the JMM
properties are exposed to the final JavaScript developer de-
pends on how the GEM exposes and permits accesses to
its shared graph. For GEMS providing safe access to their
shared graph, the presence of the JMM should be completely
transparent to the final user, as the GEM should ideally pre-
vent concurrent non-synchronized access, and should encap-
sulate any synchronization primitives without explicitly ex-
posing them.

7. Evaluation
To evaluate the performance benefits of GEMS, we imple-
mented the GEMS discussed in Section 5 to run on the
Graal.js engine. For each GEM, we developed benchmarks
to assess their performance. For each benchmark we also im-
plemented an equivalent version in pure Node.js. We report

the results for each benchmark without GEMS on Node.js
and Graal.js. Furthermore, we report the results for each
benchmark using GEMS with Graal.js. Since our GEMS
implementation is based on Graal.js, there are no numbers
for Node.js using GEMS (cf. Section 6). The benchmark
versions are executed with the same input workload, e. g.,
workload generator, input data, or files.

The experiments have been run on a server-class machine
running Ubuntu 14.04 equipped with 128GB of RAM and
two 8-core Intel(R) Xeon(R) CPU E5-2680 @ 2.70GHz,
which correspond to 32 hyper-threads. Each CPU has 2MB
of L2 cache and 20MB of L3 cache. We used Node.js version
6.0 and Graal.js version 0.13. The Web applications use the
Wrk (v4.0) HTTP workload generator. An overview of all
the benchmarks along with the GEMS they use is depicted
in Figure 8. Our main goal is to show that GEMS bene-
fit from the usage of shared memory. The numbers shown
correspond to average performance data obtained using the
Kalibera performance evaluation methodology [31]. Stan-
dard deviation is below 10%.

7.1 Meta API Overhead
A crucial aspect of the GEMS model is the meta API, since
an unacceptable overhead for accessing GEM properties
would nullify the benefits of shared memory. To assess the
overhead of the meta API, we use microbenchmarks to stress
the onGet and onSet meta API. The benchmarks perform
an increasing number of read and/or write operations on a
GEM. We compare the GEM performance taking as a base-
line the standard JavaScript property read and write opera-

Benchmark Description & GEM used for the implementation.

Ping One-to-one message latency (Owned GEM).
Ring One-to-many data distribution (Owned GEM).
Multicast One-to-many throughput (ReadOnly GEM)
Dispatch Many-to-many message latency (ReadOnly GEM).
Access GEM access performance (ReadOnly GEM).

Scale-Up Stateless HTTP requests serving with internal com-
munication between workers (ReadOnly GEM).

Immutable HTTP requests serving with shared (GEM) or repli-
cated (Node.js) immutable data (ReadOnly GEM).

Cache HTTP requests serving with high read contention on
shared consistent data (Atomic-STM GEM).

Wordcount Parallel calculation of the distribution of words in a
data structure (ReadOnly & Partitioned GEMS).

Grep Parallel scraping of a pattern in a sequence of tokens
(ReadOnly & Atomic-LK GEMS).

SHA A parallel calculation of the SHA of a big document
(Partitioned-dyn GEM).

Crc32 A parallel calculation of a CRC code (ReadOnly &
Partitioned GEM).

Primes Parallel primes number calculator (Partitioned
GEM).

Mandelbrot Parallel Mandelbrot set calculation. (ReadOnly &
Partitioned GEM).

Figure 8. Overview of the benchmarks used in Section 7.
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Figure 9. Micro-benchmarks measuring the impact of the
meta API on the performance of property accesses

tion, i. e., not using GEMS. Figure 9 summarizes the results
of the experiments reporting the slowdown with respect to
the baseline (higher is better).

As the graphs show, reading or writing from a GEM
property using the meta API (i. e., GEM) has limited slow-
down compared to the pure JavaScript operation (i. e., direct
property access). The overhead (less than 30% on average,
see last column) makes it possible to use GEMS as a drop-in
replacement of send-by-copy messages, as we will show in
the rest of our evaluation. The optimizations performed by
the Graal.js engine are essential to make the approach prac-
tical. To assess the impact of such optimizations, we have
disabled inlining and polymorphic inline caching for the mi-
crobenchmarks. When all optimizations are disabled (i. e.,
GEM no-opt) accessing a GEM is one order of magnitude
slower than accessing a normal object. Such overhead would
of course make the GEM model less attractive as it would
limit the type of applications where GEMS can be used.

7.2 Message Passing Using GEMS

GEMS can be used in common message-passing applica-
tions as a replacement for messages when shared memory
is available. For example, ReadOnly GEMS can be used to
implement multicast (i. e., one-to-many) operations, while
Owned GEMS can be used to send data from one worker
to another via ownership transfer.

We developed a selection of benchmarks inspired by
common Actor benchmarks [30] used to measure the com-
munication overhead of workers-like systems. Each bench-
mark consists of some workers sending some objects for a
fixed number of times to other workers. All the benchmarks
transfer objects between multiple workers. The first four
benchmarks in Figure 10 receive an object and send it back
to the sender or to other workers. Each benchmark differs in
the communication topology and the type of GEM used:

• Ping is a benchmark where two workers exchange an ob-
ject for a fixed number of times (103). The performance
is measured for objects with an increasing size, and the
performance of plain Node.js is compared against an im-
plementation using an owned GEM.

• Ring is a benchmark where a “master” worker exchanges
an object with 16 parallel workers. The master worker
acts as a network proxy, and sends the object to each
worker sequentially, that is, it waits for a worker to
have received the object before sending a message to
the worker in the ring. The operation is repeated for a
fixed number of iterations (103), with an increasing ob-
ject size. An owned GEM is used in the GEM-based
implementation of the benchmark.

• Multicast is a benchmark where a “master” worker sends
an object to 16 workers in parallel, i.e., without waiting
for each worker’s reply. The multicast operation is re-
peated for a fixed number of iterations (103), and a read-
only GEM is used so to share the same object with all the
workers.

• Dispatch is a benchmark where 16 workers exchange
messages based on message content. Each worker gen-
erates a message and sends it to a random receiver. Af-
ter receiving it, the worker re-sends the message to an-
other random worker. The operation is repeated for a
fixed number of messages (104), and a readonly GEM
is used for messages.

• Access is a benchmark where two workers exchange an
object of fixed size (104 bytes). After the object is re-
ceived, the worker reads some of its properties before re-
plying. A readonly GEM is used, and the operation is re-
peated for a fixed number of iterations (102). The size of
the object exchanged between workers is constant, while
the number of properties read increases between execu-
tions.

We compare GEM-based executions to equivalent imple-
mentations with Graal.js and pure Node.js.

As Figure 10 shows, the cost of exchanging a GEM be-
tween workers is considerably lower also for objects of small
size. This is expected, as exchanging a GEM corresponds to
an in-memory transfer, whereas transferring even a small ob-
ject between two isolated workers requires JSON serializa-
tion, inter-process communication, and data de-serialization
into the memory space of the receiver worker. As the size
of the objects transferred between workers grows, both
Node.js’ and Graal.js’ performance start to degrade. This
is also expected, and it is due to the cost of transferring data
between the memory spaces of the workers. Using GEMS,
the size of the objects transferred does not affect the perfor-
mance of the benchmarks. These results confirm that GEMS
can be a valid alternative to standard messages.

The last benchmark (Access) is similar to the first one
(Ping), but the object exchanged between workers has a fixed
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Figure 10. GEMS message passing performance. In all the considered workloads, Node.js performance degrade as the
message size increases. Graal.js has comparable performance to Node.js and similar linear dependency to the message size.
When GEMS are used, the size of the message does not affect performance, as in-memory transfer is used. The only exception
to this is represented by the access micro-benchmark.

size. Instead of the object size, the benchmarks changes
in the number of elements that each worker reads from
the incoming message. In this case, the performance of the
GEM-based implementation are still better than the ones
of Graal.js, but the number of operations performed on the
GEM affects the overall performance of the application.
This result is expected, and shows that GEMS can reduce
the communication overhead even when the entire message
is used by the receiver. This also suggests that ReadOnly
and Owned GEMS are particularly useful when a receiver
worker does not need the entire message, but only a fraction
of it.

7.3 Node.js Applications
One common usage of workers in Node.js applications is
to scale-up Web services. In such applications, workers ac-
cept incoming requests (from independent clients) in par-
allel, perform some computation, and reply. Recently, the
so-called Microservices [48] architecture has popularized
the usage of workers in this way. When the service requires
some notion of state, the share-nothing model of workers
requires developers to use external services such as Mem-
cached [1] or Redis [2] to share data between workers.
Such services offer distributed storage and failure tolerance,
but are often used merely to enable temporary shared state
within a single multicore machine. This usage has become
so common that services such as Redis provide synchro-
nization (e. g., using locks) and atomicity (using a form of
software transactions) on the shared memory they expose to
workers. Such approach, however, comes at the cost of in-
creased service latency, as it requires each worker to access
an object cached in the memory space of the external ser-
vice, to transfer it into its memory space (usually using TCP
connections) and to re-materialize it into its heap space be-
fore generating the reply for a client. When such cost is not
acceptable (e.g., for latency-bound services) workers avoid
using external caching systems, and rely on per-process lo-

cal caching systems (e.g., TTL [9]). Using such a solution,
each worker has its private cache, and the web service trades
performance (latency) for memory consumption.

GEMS can be used in such applications to avoid using ex-
ternal services when they can be replaced with shared mem-
ory, avoiding at the same time the cost of replicating the
cached data into each worker’s memory space. In the third
part of our evaluation we focus on three types of Web ap-
plications that rely on some notion of application-level state,
namely stateless, immutable, and caching. We developed a
Web application using GEMS for each type, and we com-
pared them against an equivalent Node.js implementation
(results are depicted in Figure 11):

• In the first application (Scale up), workers do not share
any local state, and interact with each other to generate
the user response. This scenario is common in the Mi-
croservices architecture, where some worker-private state
is combined to generate some application-level state to
process a client request. The application requires the in-
teraction of two distinct workers for each client request:
once a request arrives, it is received and then forwarded
to a background worker for processing. By decoupling
the workers that accept incoming requests from the ones
that perform the computation, multiple requests can be
accepted in parallel. Using GEMS to implement the mes-
saging between workers, the application performs con-
siderably better. This is expected, and it is due to the re-
duced overhead of data transfer.

• In the second application (immutable), workers own an
immutable data structure (e. g., a registry of immutable
user data) that they use to generate the client response.
The application involves one worker per request and
demonstrates the benefits of sharing data instead of repli-
cating it. Each worker owns a private copy of a replicated
in-memory data structure which is used to generate the
response. In this case the Node.js and the GEM appli-
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Figure 11. Web services benchmarks. Latency and through-
put of pure Node.js applications compared against their
equivalent GEM-based implementation. Node.js’s scalabil-
ity and peak performance are comparable with the ones of
GEMS, which do not need data replication or external ser-
vices.

cations scale identically. However, each Node.js worker
has a replicated copy of the data structure, resulting in a
larger memory footprint, while the version with GEMS
shares a single copy directly. For big immutable data
structures, the memory saving can be highly beneficial.

• In the third application (cache), workers access and mod-
ify an in-memory cache. The cache is mostly read, and
less frequently modified. The application (cache) uses
Node.js and Memcached to implement an in-memory
data structure, and it is compared against a GEM-based
implementation using an Atomic-STM GEM to perform
the concurrent updates. Since most of the requests to the
cache are cache hits, the transactional memory performs
mostly read-only transactions. For this reason, the per-
formance of the service are comparable to the ones of
Memcached. The scalability curve is however different,
as the service achieves its best throughput at 16 threads.
This can be explained by observing that the machine used
for the experiments has 16 physical cores. When hyper-

threading is used (i. e., at 32 threads), the synchroniza-
tion required by the STM runtime degrades the perfor-
mance of the service. In absolute terms, however, GEMS
can achieve comparable performance, without the addi-
tional architectural complexity of having to deploy two
systems, and program against the external Memcached
API.

7.4 Parallel Programming
GEMS can also be used to write parallel computing ap-
plications. To highlight the benefits of shared memory, we
developed a selection of common data-intensive and CPU-
intensive benchmarks using GEMS, and we compared them
against their pure message-based equivalents in Node.js. Re-
sults are depicted in Figure 12. The first two benchmarks
(Wordcount and Grep) are data-intensive, while the latter are
more CPU-intensive:

• Wordcount and Grep are benchmarks that read from a
shared file system some data and process it to either com-
pute some word distribution or to search for some key-
words. Both benchmarks require exchanging a relevant
amount of data (i.e., the files) between workers, with
a considerable impact on the overall application perfor-
mance.

• The remaining benchmarks perform some computations
based on an input data structure. Primes scans a list of
random numbers counting the number of prime numbers
in it; Mandelbrot computes the mandelbrot set from a ma-
trix; Sha and Crc encode a long sequence of characters. In
a pure message-based implementation each application
can be implemented using some notion of workload dis-
tribution (e.g., scatter/gather [17] or MapReduce [20]).
For some applications the cost of transferring data can
have an impact on the overall computation. By using
GEMS, most of the data-transfer-related overheads can
be reduced.

As the figure shows, using GEMS for data-intensive
computations improves the performance of the applications.
Note that the impact of GEMS can be more evident when
a limited number of cores is used. This happens because
with a small number of workers the size of the messages to
be exchanged increases, and so does the overhead for send-
ing data to workers. This result suggests that implementing
such applications using Node.js is only reasonable as long
as communication is not the bottleneck. Conversely, appli-
cations using GEMS are not affected by this phenomena, as
the size of the message is not relevant for the performance
of the application. Considering CPU-intensive applications,
Node.js and GEMS scale similarly, since data transfer is
not a bottleneck for most of the applications. Nevertheless,
the two implementations have a very different programming
model, as using GEMS enables direct access to data, there-
fore resulting in a more compact definition of the algorithms.
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Figure 12. Parallel applications. The throughput measures
the number of operations per second. The throughput of
Node.js applications is affected by the size of the messages,
while GEM-based applications are not. The Speedup factor
shown is the speedup of GEMS with respect to Graal.js. The
GEM-based implementation is consistently faster than its
baseline.

8. Related Work
GEMS and Object Capabilities. The concepts of object
capabilities originates from work of Dennis and Van Horn

[21] and since then has been used in various ways in the
context of programming models [40]. Some researchers have
tried to define a set of useful capabilities for concurrent pro-
gramming [13, 23]. A relevant example is the Pony [15] lan-
guage, which features a type system that automatically en-
forces read or write access to shared objects between actors.
Pony is itself inspired by the design of E [44]’s program-
ming model, and shares some similarities with ownership-
based models [12]. In contrast to such approaches, our tech-
nique works with an existing dynamically-typed language,
and does not require any type system to enforce access rights
to shared state. Moreover, the GEM model is more cus-
tomizable than the one of languages such as Pony, as it al-
lows GEM developers to implement complex sharing strate-
gies that can rely on runtime informations only, e. g., to in-
troduce temporary access rights (i. e., temporary ownership),
as with the owned GEM we have described.

Parallelism for JavaScript. In the JavaScript ecosystem,
related work includes WebWorkers [4], Cluster [8] and
RiverTrail [28], which have been detailed in previous sec-
tions. RiverTrail has the notion of Temporal Immutabil-
ity [39], which can also be emulated using a GEM. GEMS,
however, are not explicitly targeted at data-parallel compu-
tations only. A proposal for so-called SharedArrayBuffer

introduces a new typed data structure that can be shared be-
tween workers [10]. It introduces a raw binary buffer shared
between workers, and could be implemented using a GEM,
too. To our knowledge, other Node.js modules for parallel
programming rely on share nothing parallelism or use exter-
nal services to enable shared state.

Shared Memory Approaches for Non-shared Memory Sys-
tems. Going beyond JavaScript, other programming mod-
els for sharing state between isolated entities such as work-
ers have been proposed [18, 42]. These approaches share
with GEMS the goal of enabling shared state, but focus
on specific use cases. GEMS however are a generic ab-
straction, which can potentially be used to implement such
approaches. GEMS’s meta API builds on the notion of
Proxy [47] and metaobject protocols [33]. Unlike existing
approaches, the meta API in GEMS is used to coordinate
the access between multiple workers. Moreover, it works
in combination with the notion of JSON copy previously
introduced, and has access to the GEM-private Sync mod-
ule for the implementation of concurrency control mech-
anisms. JavaScript itself supports proxies in the ECMA6
standard [6]. However, these proxies cannot be shared be-
tween workers and therefore cannot be used to implement a
GEM.

Shared Memory Programming Models. The GEMS and
their parallel programming models in this paper are in-
spired by models from other languages and frameworks.
Delegation-based isolation, for example, is supported in dif-
ferent forms in actor-based models [37]. Partitioning is also
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available in several models, e. g., all models based on parti-
tioned global address space [19]. We do not claim novelty
for the programming models enabled by GEMS, but we con-
sider GEMS an innovation that enables the implementation
of such programming models in shared-nothing environ-
ments. Furthermore, we see them as a mechanism that can
be used to introduce sharing in a safe way and with very
fine-grained control.

Approaches to introduce disciplined shared memory have
a long tradition. One example are hyperobjects as intro-
duced by Cilk++ [26]. They are programming abstractions
that provide shared-memory between threads with a specific
set of properties depending on the concrete hyperobjects,
which is an approach similar to GEMS. Other models have
attempted to combine shared memory and message-based
models [18, 32]. In contrast to these approaches, GEMS do
not force the adoption of a single specific model, and could
be used to combine other models in higher-level structured
forms (e. g., in the form of Skeletons [16]).

The zero-copy mechanism used for some GEMs (i. e.,
Owned GEMs) closely resembles zero-copy ownership-
transfer, which is present in existing MPI frameworks, as the
Ownership Transfer Interface library by Friedley et al. [25],
or SOTER by Negara et al. [41]. The idea of ownership
passing derives from previous systems, such as distributed
shared memory (DSM) systems [43] and early cache co-
herence protocols [24]. An additional example of a system
providing an extension for ownership passing is represented
by the Generic Message Passing Framework [34, 35], which
comprehends a message passing interface for C++.

9. Conclusion
In this paper we introduce Generic Messages (GEMS), a
new abstraction to enable parallel programming in the con-
text of WebWorkers-like models. GEMS are a generic form
of messages that can be shared between workers to en-
able several forms of parallel programming models that rely
or benefit from shared memory. Our evaluation shows that
GEMS have a performance advantage for Node.js applica-
tions. The advantage comes from using shared memory to
share state between workers in a thread-safe way.

In future work, we will investigate novel GEMS, with a
special focus on high-level programming models for typical
Node.js cloud deployments. Moreover, the GEMS model
is applicable beyond Node.js, and we are investigating its
application in other languages or language implementations
with shared-nothing parallelism models. In doing so, the
main open question is how to extend the GEMS model in
order to support languages with semantics different from the
one of Node.js.
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