
A Formal Foundation for Trace-based JIT Compilers

Maarten Vandercammen* Jens Nicolay* Stefan Marr† Joeri De Koster*
Theo D’Hondt* Coen De Roover*

*Vrije Universiteit Brussel, Belgium
† Johannes Kepler University Linz, Austria

*firstname.lastname@vub.ac.be † stefan.marr@jku.at

Abstract
Trace-based JIT compilers identify frequently executed pro-
gram paths at run-time and subsequently record, compile
and optimize their execution. In order to improve the per-
formance of the generated machine instructions, JIT com-
pilers heavily rely on dynamic analysis of the code. Existing
work treats the components of a JIT compiler as a monolithic
whole, tied to particular execution semantics. We propose a
formal framework that facilitates the design and implemen-
tation of a tracing JIT compiler and its accompanying dy-
namic analyses by decoupling the tracing, optimization, and
interpretation processes. This results in a framework that is
more configurable and extensible than existing formal trac-
ing models. We formalize the tracer and interpreter as two
abstract state machines that communicate through a mini-
mal, well-defined interface. Developing a tracing JIT com-
piler becomes possible for arbitrary interpreters that imple-
ment this interface. The abstract machines also provide the
necessary hooks to plug in custom analyses and optimiza-
tions.

Categories and Subject Descriptors D.3.1 [Formal Defini-
tions and Theory]: semantics; D.3.4 [Processors]: compil-
ers, optimization

Keywords tracing JIT compilation, operational semantics,
dynamic analysis

1. Introduction
Just-in-time (JIT) compilation is a technique where, instead
of statically compiling and optimizing an entire program up-
front, an execution engine observes the program’s execution
and a JIT compiler emits machine code at run-time. Doing so

allows the compiler to take into account specific character-
istics of the program’s execution when generating machine
instructions, such as the values or types of the expressions
that are executed. Dynamic analysis is therefore essential to
the process of JIT compilation, since JIT compilers use these
kinds of analyses to optimize the instructions that they gen-
erate at run-time [6].

The few formal models that exist on tracing compilation
[2, 5] are irreversibly tied to one particular execution model
for one particular programming language and treat the dif-
ferent components of a tracing JIT compiler – interpreter,
tracer, compilers, and optimizers – as a monolithic whole
with strong coupling between them. Investigating different
execution models requires extensive changes to the language
semantics used by these models. They are geared more to-
ward exploring soundness of trace optimizations instead of
enabling experiments in dynamic analysis.

We propose a formal framework that facilitates the de-
sign and implementation of a tracing JIT compiler and the
dynamic analyses on which it relies by decoupling the trac-
ing, optimization and interpretation processes, resulting in
a complete framework that is more configurable and exten-
sible than existing formal tracing models. The main benefit
of our model is that it enables applying tracing compilation
to, and subsequent dynamic analysis of, any arbitrary inter-
preter that satisfies a small, fixed interface (Section 3.2). Ex-
cept for this minimal interface, the interpreter is otherwise
treated as a black box and no particular implementation is
specified. Our model also provides the necessary hooks to
plug in custom analyses and optimizations. We do not define
any concrete trace optimizations, but because of the strong
decoupling of components, trace optimizations can be added
in a modular way without being tied to any particular tracer
or interpreter.

2. Trace-based JIT Compilation
Trace-based JIT compilation is a variant of JIT compilation
that builds on two basic assumptions: most of the execution
time of a program is spent in loops, and several iterations
of the same loop are likely to take the same path through
the program [1]. Starting from these two premises, tracing

(let ((a 5))

(while (not (zero? a))

(complex-function (set! a (sub1 a)))))

. . .
push continuation(appk(sub1))
lookup variable(a)
pop continuation()
apply native(sub1)
pop continuation()
. . .
guard while()
. . .

Figure 1. Program with a traceable loop, and part of the
corresponding trace.

compilers do not limit themselves to the compilation of
methods, like method-based JIT compilers, but they trace
frequently executed, “hot” loops in general.

Trace-based JIT compilation is usually performed in a
mixed-mode execution environment [1], consisting of both
an interpreter and a JIT compiler. In a first phase, the in-
terpreter executes the program but simultaneously profiles
the code, in order to identify hot loops. When a hot loop is
detected, the interpreter starts tracing the execution of this
loop: the operations that are performed by the interpreter
during the execution of this loop are recorded into a trace.
Tracing continues until the interpreter has completed one
full iteration of the loop. Because the trace is a recording
of the operations performed by the interpreter, function calls
are automatically inlined in the trace. Once tracing has com-
pleted, the recorded trace is compiled and optimized. Subse-
quent iterations of this loop then execute the compiled trace
instead of the original loop.

Because a trace is a representation of a single execution
path, we must ensure that the conditions that caused the in-
terpreter to select this path during the recording of the trace
are still valid during the execution of the trace. Tracing JIT
compilers check assumptions by adding guards to a trace.
When a guard fails, execution of the trace is aborted and
the interpreter resumes normal interpretation of the program
from that point onward. The process of aborting trace exe-
cution and restarting interpretation is called a side-exit. Side-
exits give rise to a runtime performance penalty, because the
interpreter state must be correctly restored before normal in-
terpretation can resume.

Example Figure 1 depicts a LISP-like program containing
a loop that may be traced, followed by a part of the trace that
would be recorded when executing this program. At some
point during program execution, the interpreter might decide
that the while loop is hot. The interpreter then traces one
full iteration of the loop, starting from the beginning of the
loop, continuing through the assignment, and terminating the
trace when the start of the loop is reached again. Tracing the
interpreter’s actions comes down to recording the consec-

TracerState = ts(ExecutionPhase,

TracerContext ,

ProgramState,

TraceNode)

ExecutionPhase = NI

| TR

| TO

| TE

tc ∈ TracerContext = tc(False + TraceNode, TraceNode∗)
tn ∈ TraceNode = tn(Label ,Trace)

τ ∈ Trace = TraceInstruction∗
TraceInstruction =ProgramState → InstructionReturn

InstructionReturn = traceStep(ProgramState)

| guardFailed(Restartpoint)
TracingSignal = loop(Label)

| False
restart =Restartpoint × ProgramState → ProgramState

InterpreterReturn = step(ProgramState,

Trace,

TracingSignal)

Figure 2. The tracing machine.

utive instructions the machine executes to update the state
on which it operates. The example trace contains the guard
guard while() that checks whether the value computed for
the condition of the while loop during trace execution cor-
responds with the boolean #t observed during trace record-
ing.

3. Tracing Machine
The tracing machine is modeled as a state machine transi-
tioning between tracer states, as formalized in Figure 2. We
give an overview of its different components.

3.1 Tracer State
We capture the state of the tracing machine in a TracerState ,
consisting of an execution phase, a tracer context, a program
state, and a trace node.

During the execution of the program, the tracing ma-
chine switches between four distinct execution phases, indi-
cated by ExecutionPhase: normal interpretation (NI), trace
recording (TR), trace optimization (TO), and trace execu-
tion (TE). The execution phases and possible transitions can
be modeled as a state diagram, as shown in Figure 3. We de-
scribe the transition between the different tracer states and
execution phases of our tracing machine in Section 3.3.

The TracerContext is a two-tuple used by the tracer. The
first component of the tuple stores the trace that is currently
being recorded. This is either False , if no trace is being
recorded, or it consists of a trace node (TraceNode), which

Trace finished

Trace
Optimization

[TO]

loop [different label]

Store trace

Guard failed

Normal
Interpretation

[NI]

 loop

[existing trace]

 loop

[same label]Trace

Recording

[TR]

 loop

[no existing trace]

Trace

Execution

[TE]

Figure 3. The four execution phases of a program.

step : ProgramState 7→ InstructionReturn

restart : Restartpoint × ProgramState 7→ ProgramState

Figure 4. Minimal tracing interface for interpreters.

is a simple structure used to associate a trace with a unique
label, so that this trace can later be retrieved by referencing
its label. The second component of the tracer context is a list
of all trace nodes containing the traces that have previously
been recorded.

The ProgramState is defined by the interpreter and is
opaque to the tracing machine. The interpreter operates di-
rectly on program states, while the tracer obtains new pro-
gram states from the interpreter during normal interpretation
and trace recording, or by executing trace instructions during
trace execution.

The last component of the tracer state either equals False
if no trace is currently being executed, or it contains the trace
node storing the trace that is being executed.

3.2 Tracing Interface
In our framework, the tracer monitors and controls the exe-
cution of the interpreter by using the minimal interface de-
picted in Figure 4.

It is assumed that the interpreter can be modeled as a
state machine operating on a ProgramState . Interpreting a
program then comes down to following a fixed set of state
transition rules; tracing the interpreter can be modeled as
recording the transitions that are applied by the interpreter
and executing a trace is done by replaying all recorded state
transitions on the current program state.

To allow for a more fine-grained optimization of traces,
we allow the interpreter to use two sets of state transition
rules: high-level and low-level transitions, both operating on
a program state. One high-level transition is composed of
several low-level transitions, i.e., executing the high-level

High-level
 transition

LLT3

LLT2

LLT1

Low-level
transition intermediate

state 2

state 2state 1

intermediate

state 1

Figure 5. High-level and low-level state transitions.

transition is equivalent to applying each of the constituent
low-level transitions consecutively.

During the normal interpretation and trace recording
phases, the tracing machine repeatedly asks the interpreter
to perform a single high-level transition by calling step.
This function takes the current program state as input and
outputs an InterpreterReturn: a three-tuple containing the
resulting program state, the set of low-level state transitions,
or trace instructions, that together constitute the high-level
transition that has been performed, and possibly a tracing
signal. During the tracing phase of the program’s execution,
the tracer appends the trace instructions to its current trace.
The tracing signal is used by the interpreter to indicate that
it has reached the start of a loop. This allows the tracer to
decide whether to start tracing this loop, start executing a
previously recorded trace for this loop, or do nothing at all.
For this to work, the interpreter machine should uniquely
identify each loop in the user program through a label.

Traces contain guard instructions at certain locations to
ensure that the control flow of the executed trace remains
valid. In this model, we implement guards as a kind of
trace instruction: a guard takes a program state as input,
checks some condition in the state and signals back to the
tracer that the condition is either still valid or has become
invalid, i.e., that the guard has failed. Since the generation
and placement of guards depends on the semantics of the
language under consideration, the interpreter is expected to
create the necessary guards when applying step and return
them through the InterpreterReturn , mixed with the other
trace instructions that are returned, so that, if any trace is
being recorded, the guards are automatically inserted into
the trace.

As we implement guards as a form of low-level tran-
sition, guards must have the same interface as “regular”
trace instructions. Each trace instruction takes a program
state as input and returns an InstructionReturn . This
InstructionReturn can either be a traceStep or a guard-
Failed. By using these two structures, we allow for both
the execution of guard and non-guard instructions. Execut-
ing a non-guard instruction results in a traceStep being
returned, carrying the new program state. A guard instruc-
tion, however, may return either of both structures. If the
condition that is guarded is invalid, a guardFailed can be
returned so that the tracer can detect this and take actions
accordingly. If the condition is still valid, the guard can sim-

ply return its input, or any other program state it wishes to
return.

We also require the interpreter to implement a mecha-
nism to restart normal interpretation from the point of a
guard failure. To this end, we require the existence of a func-
tion restart in the interface and we define the concept of
restartpoints. The exact definition of a restartpoint is inten-
tionally left vague, so that interpreters may implement these
as they wish. When a guard fails during the execution of
a trace, the tracing machine applies restart to the current
program state, i.e., the state of the program at the point of the
guard failure, and the restartpoint associated with the failed
guard in order to retrieve the program state from where nor-
mal interpretation must resume.

It is important to note that we never specify a concrete
definition for any of the concepts that we have defined here,
such as the program state or the restartpoint. Interpreters
may implement these as they wish, allowing for maximal
decoupling between the tracer and the interpreter. To give a
concrete example however, when using a CESK machine as
an interpreter [3], the program state would be the CESK state
while a restartpoint may simply be the control component
of this state. In this case, the restart function could then be
implemented as a function that takes this control component
and merges it with the rest of the CESK state, i.e., the
environment, store and continuation stack.

It is also important to note that the definition of the
TracingSignal can be extended. Later on, one may wish
to extend this framework with a set of new features which
might require the interpreter to send back additional infor-
mation about its execution. This can then be accomplished
by adding a new set of signals to TracingSignal .

3.3 Transition Rules
Figure 6 depicts the transition rules between tracer states.
For simplicity, we omit the trace optimization phase that
occurs after the recording of a trace is finished. Instead, we
fold this phase into a single, abstract optimize function
which takes a trace as input and returns an optimized version
of this trace.

Normal Interpretation The normal interpretation phase
(NI) of a program’s execution refers to the execution stage
in which no trace is being recorded or executed. The tracing
machine therefore delegates execution entirely to the inter-
preter and only intervenes when the interpreter has reached
the start of a loop, at which point the tracer may either decide
to start tracing this loop, or decide to start executing a trace
that was previously recorded for this loop. The interpreter
signals these kinds of events through TracingSignal . The
formal semantics describing the execution of this phase are
given in Figure 6a.

Rule (1) represents the most common case where the
interpreter machine has not entered any loop. It therefore
returns False instead of a signal, along with the new program

ts(NI , tc, ς, False)→ (1)
ts(NI , tc, ς′, False)

if step(ς) = step(ς′, τ, False)

ts(NI , tc(False, TNs), ς, False)→ (2)
ts(TR, tc(tn(lbl , τ), TNs), ς′, False)

if step(ς) = step(ς′, τ, loop(lbl))

and if no trace for lbl has been recorded yet
and where TNs is a list of trace-nodes

ts(NI , tc, ς, False)→ (3)
ts(TE , tc, ς′, tn(lbl , τ))

if step(ς) = step(ς′, τ ′, loop(lbl))

and where τ is the trace that has previously been recorded for lbl

(a) Normal interpretation

ts(TR, tc(tn(lbl , τ), TNs), ς, False)→ (4)
ts(TR, tc(tn(lbl , τ : ι1 : ... : ιn), TNs), ς′, False)

if step(ς) = step(ς′, ι1 : ... : ιn , False)

ts(TR, tc(tn(lbl , τ), TNs), ς, False)→ (5)
ts(TR, tc(tn(lbl , τ : ι1 : ... : ιn), TNs), ς′, False)

if step(ς) = step(ς′, ι1 : ... : ιn , loop(lbl
′))

ts(TR, tc(tn(lbl , τ), TNs), ς, False)→ (6)
ts(TE , tc(False, tn : TNs), ς′, tn)

if step(ς) = step(ς′, ι1 : ... : ιn , loop(lbl))

and where τ ′ equals τ : ι1 : ... : ιn
and where tn equals tn(lbl , optimize(τ ′))

(b) Trace recording

ts(TE , tc, ς, tn(lbl , ι : τ))→ (7)
ts(TE , tc, ς′, tn(lbl , τ))

if ι(ς) = traceStep(ς′)

ts(TE , tc, ς, tn(lbl , ι : τ))→ (8)
ts(NI , tc, ς′, False)

if ι(ς) = guardFailed(rp)

and where ς′ = restart(rp, ς)

ts(TE , tc, ς, tn(lbl , ‘()))→ (9)
ts(TE , tc, ς, tn(lbl , τ))

and where τ is the trace that has already been recorded for lbl

(c) Trace execution

Figure 6. Transition rules between tracer-states.

state and the set of actions it has applied to compute this new
state. Because the tracing machine is running in the normal
interpretation phase, it has no use for these instructions and
therefore immediately discards them. The new tracer state is
then just a copy of the old one, where the original program
state is replaced by the new program state returned by the
interpreter machine.

A more interesting case arises in rules (2) and (3), when
the interpreter machine enters a loop identified by the label
lbl . In rule (2), no trace has been recorded yet for lbl , so the
tracer starts tracing this loop. It switches its execution phase
to indicate that it is now tracing and updates its tracer context
by replacing the component representing its current trace.
This component now becomes a trace node consisting of the
label that is traced, as well as the instructions τ that have just
been executed by the interpreter and that were carried back

in the step. The program state of the tracer state must also
be updated because this program state continues to be used
by the interpreter as its actions are being traced.

In rule (3), the same conditions as in the second rule
apply, except that the tracer context now does contain an
already recorded trace for the label lbl . In this case, the tracer
must start executing this trace, so it switches its execution
phase to TE and switches the trace node of the tracer state
to the trace node containing the previously recorded trace
for the label lbl . We again also have to update the program
state because this state now serves as the input to all state
transitions that have been recorded in the trace τ .

Trace Recording In the trace recording phase (TR), all
actions that are executed by the interpreter are recorded into
a trace. Recording stops when the interpreter again enters the
same loop that is currently being traced. The tracing machine
can detect that it has entered the same loop by comparing
the label of this loop to the label of the trace currently being
recorded. Figure 6b gives the formal semantics governing
the program’s execution during the trace recording phase.

Similar to rule (1), rule (4) describes the common case
where the interpreter machine has not entered a loop. The
tracing machine therefore records the actions that have just
been executed by the interpreter: it appends the list of trace
instructions ι1 : ... : ιn that were returned by the interpreter
through the interface and appends them to the back of the
trace τ that has already been recorded so far. Furthermore,
as in the normal interpretation phase, we update the program
state with the state returned by the interpreter machine.

In rule (5), the interpreter reaches the start of a loop
carrying a label different from the label of the loop currently
being traced. Because the label is different, entering this loop
has no impact on the tracing process, so the tracer continues
tracing. As with the first rule, we do have to update both the
program state and the trace currently being recorded.

In rule (6), the interpreter also reaches the start of a loop,
but this loop does have the same label as the one currently
being traced. Reaching the start of this loop implies that we
have now completed one full iteration of the loop, so we can
stop tracing, analyse and optimize the completed trace and
store the optimized trace away in the tracer context. Note that
there is no explicit transition from the trace recording to the
trace optimization phase, but that this is handled implicitly
via the optimize function. Furthermore, because we are
at the start of the loop that we have just traced, we can
immediately start executing the optimized trace instead of
switching back to normal interpretation.

Trace Optimization (TO) Our framework leaves open
which analyses and optimizations are performed or how they
are implemented. Instead, they are treated as one opaque
function, optimize, which takes a trace as input and returns
an optimized version of this trace. optimize essentially
forms the hook through which developers can plug their op-
timizations and analyses into the framework. Although in

practice the analysis and optimization of traces is likely to
be performed in the background, simultaneously to program
execution, for simplicity we treat trace optimization as a
sequential process in the model.

Trace Execution In the trace execution phase (TE) the
tracer is executing a previously recorded trace. In Figure 6c
we define the formal semantics that express how the execu-
tion of a trace should be handled. For these rules, we write
ι(ς) to express that we apply the trace instruction ι on the
program state ς . Recall that a guard instruction is considered
to be the same as any other trace instruction. In rule (7), we
apply an instruction ι from the trace on the current program
state and a traceStep is returned, containing the program
state resulting from applying this instruction. The tracer then
continues by swapping its program state and moving on to
the next instruction in the trace. This rule represents both
the case where we apply a non-guard instruction, or a guard
instruction that did not fail.

Rule (8) expresses the case where a guard instruction has
been applied and subsequently failed. The rule states that we
should then switch our execution phase to normal interpreta-
tion. Additionally, interpretation should be restarted from the
point in the program that corresponds with the guard failure.
To find this point, we can call the restart function provided
by the interpreter with the restartpoint given by the guard
and the current program state, as mentioned in Section 3.2.

Rule (9) handles the case where we have reached the end
of a trace. Reaching the end of the trace corresponds with
finishing one full iteration of the loop, so we simply restart
the trace: we look up the full trace belonging to the label of
the trace we we executing and we replace the current, empty,
trace by this new, full, trace.

4. Evaluation
As a validation of this model, we have implemented an inter-
preter for a LISP-like language. Figure 1 depicts an example
of a small program in this language. Its interpreter satisfies
the interface defined in Section 3.2. The implementation1

and complete formal semantics2 are publicly available.
The interpreter is modeled after a CESK machine [3],

extended with a value register named v for storing the value
of the last expression that was evaluated. Execution of a
program therefore proceeds through following a set of CESK
state transitions.

Due to space constraints, we provide only a partial
overview of the interpreter, containing the most relevant
evaluation rules. For example, evaluation of a while-expression
of the form (while cond exp) is handled by the following
transition:

ps((while cond exp), ρ, σ, κ, v)→

1 https://github.com/mvdcamme/woda15/
2 https://soft.vub.ac.be/~mvdcamme

https://github.com/mvdcamme/woda15/
https://soft.vub.ac.be/~mvdcamme

step(ps(cond , ρ, σ, φ : κ, v), {psh cont(φ)}, False)
where φ equals wcondk(cond , exp)

Evaluating such an expression thus comes down to pushing
a wcondk continuation, containing the condition and the
body of the while-expression, onto the continuation stack
and continuing with the evaluation of the condition. Calling
step on the left-hand side program state therefore results in
the step structure on the right-hand side of the transition.

Once evaluation of cond is completed, the wcondk con-
tinuation is popped and the following rule is triggered:

ps(wcondk(cond , exp), ρ, σ, φ : κ, v)→
if v equals #t:
step(ps(exp, ρ, σ, wbodyk(cond , exp) : φ : κ, v),

{guard while(); psh cont(wbodyk(cond , exp))}
loop(exp))

if v equals #f:
step(ps(φ, ρ, σ, κ, v), {pop cont()}, False)

If the condition was true, evaluation proceeds to the body of
the while. Since the interpreter then enters the start of a loop,
it sends the tracing signal loop to the tracer. In the case of
this mini-language, the body of the while loop can be used
to uniquely identify each loop. If the condition was false, we
skip evaluation of the loop and pop the topmost continuation
from the stack.

In each transition rule, the interpreter also returns the con-
secutive trace instructions that were used in the computation
of the new high-level program state. For example, pushing a
continuation φ onto the continuation stack is referred to as
psh cont(φ) and defined as:

ps(e, ρ, σ, κ, v)
psh cont(φ)−−−−−−−→

traceStep(ps(e, ρ, σ, φ : κ, v))

In this mini-language, only one type of guard instruction is
needed, for checking whether a while-condition is still valid.
This guard is implemented as follows:

ps(e, ρ, σ, φ : κ, v)
guard while()−−−−−−−−→

guardFailed(φ) if v equals #f

traceStep(ps(e, ρ, σ, φ : κ, v)) if v equals #t

This guard checks whether the while-condition, whose eval-
uated value is stored in the value register v, still equals #t.
If it does, the guard just returns the input program state. Else,
the guard returns a guardFailed containing the current
continuation that rests at the top of the continuation stack.
Finally, the restart function can be implemented as fol-
lows:

restart(φ, ps(e, ρ, σ, φ : κ, v))→ ps(φ, ρ, σ, κ, v)

This function effectively generates a new program state by

popping the first continuation from the continuation stack
and continuing evaluation through this continuation.

5. Conclusion
We presented a formal model of trace-based JIT compilation
that distinguishes itself from previous work by its focus on
separating the tracing aspect from the interpretation compo-
nent in the execution of a program. We achieve this by di-
viding a program’s execution between two separate entities:
a tracing machine and an interpreter machine. This decou-
pling was enabled by identifying the set of requirements that
must be satisfied by an interpreter in order to enable tracing
of its execution, and moulding these requirements into an
interface (Section 3.2). Our model formally defines a trac-
ing machine which interacts with the interpreter through this
interface, but otherwise treats it as a black box. The result-
ing framework allows us to model the tracing of all inter-
preters that adhere to this interface. We validated our model
by implementing a CESK-style interpreter that conforms to
the defined interface, and demonstrated how it interacts with
the tracer.

The model presented in this paper facilitates experiments
with dynamic analyses because it formalizes the concept of
trace-based JIT compilation and enables gathering a pro-
gram’s execution traces. These traces can subsequently serve
as input for run-time dynamic analyses, such as type special-
ization, constant propagation of observed runtime values, al-
location removal etc. In future work we plan to develop new
analyses, or evaluate existing optimizations, in the context
of a diverse set of execution traces. Alternatively, this model
can be used to prove the soundness of existing trace opti-
mizations, as has already been explored in previous formal
models [2, 5].

References
[1] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing

the meta-level: Pypy’s tracing jit compiler. In Proc. of the 4th
Workshop of ICOOOLPS, ’09, pages 18–25.

[2] S. Dissegna, F. Logozzo, and F. Ranzato. Tracing compilation
by abstract interpretation. In Proc. of the 41st ACM SIGPLAN-
SIGACT Symposium of POPL, ’14, pages 47–59, 2014.

[3] M. Felleisen and D. P. Friedman. A calculus for assignments
in higher-order languages. In Proc. of the 14th ACM SIGACT-
SIGPLAN Symposium of POPL, ’87, pages 314–, 1987.

[4] M. Fulton and M. Stoodley. Compilation techniques for real-
time java programs. In Proc. of CGO, pages 221–231, 2007.

[5] S.-y. Guo and J. Palsberg. The essence of compiling with traces.
SIGPLAN Not., 46(1):563–574, Jan. 2011.

[6] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and
T. Nakatani. A dynamic optimization framework for a java just-
in-time compiler. In ACM SIGPLAN Notices, volume 36, pages
180–195. ACM, 2001.

	Introduction
	Trace-based JIT Compilation
	Tracing Machine
	Tracer State
	Tracing Interface
	Transition Rules

	Evaluation
	Conclusion

