Tracing vs. Partial Evaluation

Comparing Meta-Compilation Approaches for Self-Optimizing Interpreters

Abstract

Tracing and partial evaluation have been proposed as meta-
compilation techniques for interpreters. They promise that
programs executing on simple interpreters can reach per-
formance of the same order of magnitude as if they would
be executed on state-of-the-art virtual machines with highly
optimizing just-in-time compilers. Tracing and partial eval-
uation approach this meta-compilation from two ends of a
spectrum, resulting in different sets of tradeoffs.

This study investigates both approaches in the context
of self-optimizing interpreters, a technique for building fast
abstract-syntax-tree interpreters. Based on RPython for trac-
ing and Truffle for partial evaluation, we assess the two ap-
proaches by comparing the impact of various interpreter op-
timizations on the performance. The goal is to determine,
whether either approach yields clear performance or engi-
neering benefits. We find that tracing and partial evaluation
both reach the same level of performance. With respect to
the engineering, tracing has however significant benefits, be-
cause it requires language implementers to apply fewer op-
timizations to reach the same level of performance.

Keywords language implementation, just-in-time compila-
tion, meta-tracing, partial evaluation, comparison, case study

1. Introduction

Interpretation is one of the simplest approaches to language
implementation. However, interpreters lost some of their
appeal because highly optimizing virtual machines (VMs)
such as the Java Virtual Machine (JVM) or Common Lan-
guage Runtime deliver performance that is multiple orders
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of magnitude better. Nevertheless, interpreters still standout
for their simplicity, maintainability, and portability.

The development effort for highly optimizing static ahead-
of-time or dynamic just-in-time compilers makes it often in-
feasible to build more than a simple interpreter. A recent ex-
ample is JavaScript. In the last decade, its performance was
improved by several orders of magnitudes, but it required
major industrial investments. Unfortunately, such invest-
ments are rarely justified, especially for research projects
or domain-specific languages (DSLs) with narrow use cases.

In recent years, tracing and partial evaluation became
suitable meta-compilation techniques that alleviate the prob-
lem. RPython [Bolz et al. 2009; Bolz and Tratt 2013] and
Truffle [Wiirthinger et al. 2012, 2013] are platforms for im-
plementing languages based on simple interpreters that can
reach the performance of state-of-the-art VMs. RPython
uses trace-based just-in-time (JIT) compilation [Bala et al.
2000; Gal et al. 2006], while Truffle uses partial evalua-
tion [Futamura 1971/1999] to guide the JIT compilation.

The PyPy' and Truffle/JS? projects show that general pur-
pose languages can be implemented with good performance.
However, for language implementers and implementation
technology researchers, it remains the question of what the
concrete tradeoffs between the two approaches are. When
considering different purposes and maturity of language de-
signs, the available engineering resources and the desired
performance properties required different tradeoffs. For in-
stance for a research language, it is most important to be able
to experiment and change the language’s semantics. For the
implementation of a standardized language however, the fo-
cus will typically be on performance and thus require the
best possible mechanisms to realize optimizations. For im-
plementation research, a good understanding of the trade-
offs between both approaches might lead to further improve-
ments that simplify language implementation.

In this study, we compare tracing and partial evaluation
as meta-compilation techniques for self-optimizing inter-
preters. We use RPython and Truffle as concrete representa-
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tions of these two approaches. To compare them in a mean-
ingful way, we implement SOM [Haupt et al. 2010], a dy-
namic object-oriented language with closures, as identical
as possible on top of both. Section 2 details the practical
constraints and the requirements for a conclusive compari-
son. We investigate, which impact the two meta-compilation
strategies have on a set of interpreter optimizations. The goal
is to determine whether either of the two has clear advan-
tages with respect to performance or engineering properties.
The contributions of this paper are:

* a comparison of tracing and partial evaluation as meta-
compilation techniques for self-optimizing interpreters.

* an assessment of the performance impact and imple-
mentation size of optimizations in self-optimizing inter-
preters.

We find that neither of the two approaches has a funda-
mental advantage for the reached peak-performance. How-
ever, meta-tracing has significant benefits from the engineer-
ing perspective. With tracing, the optimizer uses directly ob-
served runtime information. In the case of partial evaluation
on the other hand, it is up to the language implementer to
capture much of the same information and expose it to the
optimizer based on specializations.

2. Study Setup, Practical Constraints, and
Background

The goal of this study is to compare tracing and partial eval-
uation as meta-compilation techniques with respect to the
achievable performance as well as the required engineering
effort for interpreters. This section gives a brief overview of
meta-tracing and partial evaluation, and discusses how these
two techniques can be compared based on concrete existing
systems. It further discusses the design for the experimental
setup, the concrete experiments, and the implications for the
generalizability of the results. The section also provides the
required background on self-optimizing interpreters and the
SOM language, which we selected as case for this study.

2.1 Meta-Tracing and Partial Evaluation

While interpreters are a convenient and simple implementa-
tion technique, they are inherently slow. Hence, researchers
tried to find ways to generate efficient native code from
them without having to build custom JIT compilers. With
the appearance of trace-based JIT compilation [Gal et al.
2006], trace-based meta-compilation, i. e., meta-tracing was
the first practical solution for general interpreters [Bolz et al.
2009; Bolz and Tratt 2013]. The main idea is to trace the
execution of the interpreter instead of tracing the concrete
program it is executing, and thus, make the JIT compiler a
reusable meta-compiler that can be used for different lan-
guage implementations. The resulting traces are the units of
compilation in such a system. Based on frequently executed
loops on the application level, the interpreter records a con-

crete path through the program, which then can be heavily
optimized and compiled to native code. Since traces span
across many interpreter operations (cf. fig. 1), the interpreter
overhead can typically be eliminated completely and only
the relevant operations of the application program remain.

Fartial evaluation [Futamura 1971/1999] of interpreters
has been discussed as a potential meta-compilation tech-
nique for interpreters as well [Augustsson 1997; Sullivan
2001; Rigo and Pedroni 2006; Bolz et al. 2010]. However,
only very recently, Wiirthinger et al. [2013] were able to
show that it is a practical meta-compilation technique for
abstract-syntax-tree-based (AST) interpreters. Instead of se-
lecting the compilation unit by tracing, the unit is determined
by using a program’s AST to guide a partial evaluator. The
evaluator resolves all parts of the program that do not depend
on unknown runtime information. With the knowledge of the
AST and values embedded in it, the evaluator can resolve
otherwise highly polymorphic method calls, perform aggres-
sive constant propagation, and inlining. Thereby it identifies
the relevant elements of the interpreter implementation (cf.
fig. 1), which need to be included in a compilation unit.

In contrast to tracing, partial evaluation preserves the
control flow of the interpreter and the user program that
can not be resolved statically. Since the interpreter needs to
handle every special case of a language, which leads to very
complex control flow, partial evaluation and classic compiler
optimizations alone were not able to generate efficient native
code. Only with the idea of self-optimization, it became
finally practical.

2.2 Self-Optimizing Interpreters

The main idea of a self-optimizing interpreter is that an
executing AST rewrites itself at runtime, e.g., based on
observed types and values [Wiirthinger et al. 2012]. Typi-
cal optimizations speculate for instance that observed types
do not change in the future. For instance for an addition

if cnd:
res := 1
else:
res := 2

Trace through AST Partial Evaluation

guided by AST

Figure 1. Selecting JIT Compilation Units for AST In-
terpreters. To select a compilation unit, meta-tracing (left)
records the operations performed by the interpreter for the
execution of one specific path through a program. Partial
evaluation (right) uses the AST structure to determine which
interpreter-level code to include in a compilation unit.



operation, this allows to replace a generic node that han-
dles all possible types by one specialized for integers. With
such optimizations, an AST can specialize itself for ex-
actly the way the program uses the language. This is ben-
eficial for the interpreter, because it can avoid unnecessar-
ily generic runtime operations, and at the same time the
control flow is simplified, which leads to better compila-
tion results when partial-evaluation-based meta-compilation
is used [Wiirthinger et al. 2013].

Self-optimizations in general can also have other benefits.
The previously mentioned type-based specialization of op-
erations for instance avoids generic checks at runtime. Fur-
thermore, it can be used to avoid boxing of primitive values
such as integers to further reduce overhead and complex-
ity of the operations. Another common optimizations cache
values for later used, e. g., with polymorphic inline caches
for method lookups [Holzle et al. 1991]. Starting out from a
generic AST, the first execution of a method invocation node
does the normal lookup and then rewrites itself to a simpler
node that caches the lookup result and associates it with a
predicate that confirms whether the cached value is valid in
subsequent invocations. Thus, instead of having to include
the complex lookup logic, the node only performs a check,
and if it succeeds, the actual method invocation.

2.3 How to Compare Tracing and Partial Evaluation?

As discussed above, partial evaluation has only recently been
shown to be practical and so far only in the context of self-
optimizing interpreters. Meta-tracing has been successfully
applied to AST interpreters as well [Bolz and Tratt 2013],
thus, we compare both approaches based on self-optimizing
AST interpreters.

To our knowledge RPython® is the only meta-tracing
toolchain. Similarly, Truffle* is the only framework with
partial-evaluation-based meta-compilation for interpreters.
Thus, we chose these two systems for this experiment.

The goal of this study is to access the conceptual as
well as the practical difference of tracing and partial evalua-
tion. Hence, it stands to question what the generalizable in-
sights of an empirical comparison are. From our perspective,
both systems reached sufficient maturity and sophistication
to represent the state of the art in tracing as well as partial
evaluation technology. Furthermore, RPython with PyPy and
Truffle with Truffle/JS implement complex widely used lan-
guages with the goal to optimize the peak performance as
much as possible, and indeed reach the performance levels
of dedicated JIT compiling VMs. Thus, we expect a perfor-
mance comparison to reflect the general capabilities of the
two approaches. However, both systems implement differ-
ent sets of optimizations, and have different approaches for

3 RPython Documentation, The PyPy Project, access date: 2015-03-18
http://rpython.readthedocs.org/

4The Truffle Language Implementation Framework, SSW JKU Linz,
access date: 2015-03-18 http://www.ssw.uni-linz.ac.at/
Research/Projects/JVM/Truffle.html

generating native code. Therefore, minor performance dif-
ference between both systems are expected and will not al-
low for conclusions with respect to the general approaches.
Nonetheless, we think the general order of magnitude will
be representative for both approaches.

In order to compare both approaches fairly, we need a
language implemented based on RPython as well as Truffle.
With PyPy and ZipPy [Wimmer and Brunthaler 2013], there
exist Python implementations for both systems. However,
PyPy is a bytecode-interpreter and ZipPy a self-optimizing
interpreter. Thus, a comparison would not only compare
tracing with partial evaluation, but also include bytecode vs.
ASTs, which would make a study inconclusive with respect
to our question. The situation is the same for the Ruby imple-
mentations JRuby+Truffle > and Topaz. Moreover, they all
differ in many other aspects, e. g., the set of implemented
optimizations, which makes a comparison generally incon-
clusive. Hence, for a fair comparison we need language im-
plementations for both systems that are as identical as possi-
ble, and enables us to compare tracing and partial evaluation
instead of other aspects. For this study we use SOM, which
is discussed in section 2.5.

2.4 RPython and Truffle

In the previous section, we discussed meta-tracing and par-
tial evaluation from the conceptual perspective only. Since
this study compares the two approaches empirically, this sec-
tion provides a few technical details on RPython and Truffle.

RPython is a toolchain for language implementation that
uses meta-tracing. It is also a restricted subset of Python and
uses type inference and code transformations to add low-
level services such as memory management and JIT compi-
lation to interpreters to generate complete VMs. RPython’s
meta-tracing has been shown to work well for a wide range
of different languages including Pyrolog (Prolog), Pycket
(Racket), and Topaz (Ruby), of which some are bytecode
iterpreters, e. g., PyPy and Topaz, and others are AST inter-
preters, e. g., Pyrolog and Pycket.

With a set of annotations, language implementers can
communicate high-level knowledge about the implemented
language to the toolchain. Since trace-based compilation
works best on loops, one of the main annotation is the so-
called trace merge point, which indicates potential starting
points for traces and defines how to recognize application-
level loops. Other language-specific properties, for instance
about mostly-constant values such as method lookup results
can be communicated similarly. For instance, functions can
have side-effects that are not essential for the execution, e. g.,
for caching the result of method lookups. With RPython’s
@elidable annotation, the optimizer can be told that it
is safe to elide repeated executions within the context of a

3 JRuby+Truffle - a High-Performance Truffle Backend for JRuby, JRuby
Project, access date: 2015-03-18 https://github.com/jruby/
jruby/wiki/Truffle
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trace. Another example are values that are runtime constants.
Those can be explicitly promoted to enable the compiler to
optimize based on them. In general, these annotations are
useful in cases where an optimizer needs to make conser-
vative assumptions, but the specific language usage patterns
allow for optimistic optimizations, which can be used to gen-
erate specialized native code. A more detailed discussion of
RPython is provided by Bolz and Tratt [2013].

Truffle is Wiirthinger et al.’s Java framework for self-
optimizing interpreters and uses partial evaluation as meta-
compilation technique. It integrates with the Graal JIT com-
piler for the partial evaluation of ASTs and the subsequent
native code generation. Truffle in combination with Graal is
built on top of the HotSpot JVM, and thus, guest languages
benefit from the garbage collectors, memory model, thread
support, as well as the general Java ecosystem.

For language implementers, Truffle provides an annotation-
based DSL [Humer et al. 2014], which avoids much of the
boilerplate code for typical self-optimizations. For instance,
the DSL provides simple means to build specialized nodes
for different argument types of operations. Instead of manu-
ally defining various node classes, the DSL provides a con-
venient way to provide only the actual operation. The node
rewriting and argument checking logic is generated.

In addition to the DSL, there are other differences to
RPython. For instance, runtime constants are exposed by
providing node specializations instead of using a promote-
like operation. Thus, the value is cached in the AST in-
stead of relying on a trace context as RPython does. An-
other difference is that Truffle relies on explicit indica-
tions to determine the boundaries of compilation units.
While RPython relies mostly on tracing, Truffle uses the
@TruffleBoundary annotation to indicate that methods
should not be included in the compilation unit. This is nec-
essary, because Truffle uses a greedy inlining based on the
partial evaluation, which would lead to too large compilation
units without these explicit cutoffs. In practice, boundaries
are typically placed on complex operations that are not on
the fast path, e.g., lookup operations and complex library
functionality such as string or hashtable operations. Also re-
lated is Truffle’s transferToInterpreter operation,
which results in a deoptimization point [Holzle et al. 1992]
in the native code. This excludes the code of that branch
from compilation and can avoid the generation of excessive
amounts of native code and enable optimizations, because
the constraints of that branch do not have to be considered.

2.5 The Case Study: SOM (Simple Object Machine)

As discussed in section 2.3, for a meaningful comparison of
the meta-compilation approaches, we need close to identical
language implementations on top of RPython and Truffle.
We chose to implement the SOM language as case study. Itis
an object-oriented class-based language [Haupt et al. 2010]
designed for teaching. Therefore, it is kept simple and in-

cludes only fundamental language concepts such as objects,
classes, closures, and non-local returns. With these con-
cepts, SOM represents a wide range of dynamic languages.
Its implementation solves the same performance challenges
more complex languages face, for instance for implement-
ing exceptions, specializing object layouts, and avoiding the
overhead for dynamic method invocation semantics, to name
but a few.

While its size makes it a good candidate for this study,
its low complexity raises the question of how generaliz-
able the results of this study are for other languages. From
our perspective, SOM represents the core concepts and thus
solves many of the challenges common to more complex
languages. What we do not investigate here is however
the scalability of the meta-compilation approaches to more
complex languages. Arguably, projects such as PyPy, Py-
cket, Topaz, JRuby+Truffle, and Truffle/JS demonstrate this
scalability already. Furthermore, even so SOM is simple, it
is a complete language. It supports classic object-oriented
VM benchmarks such as DeltaBlue, Richards, and numeric
benchmarks such as Mandelbrot set computation and n-body
simulations. We further extended the benchmark set to in-
clude a JSON parser, a page rank algorithm, and a graph
search to cover a wide range of use cases server programs
might face.

Implementation Differences of SOMy;r and SOMpg. Sub-
sequently, we refer to the two SOM implementations as
SOMpyr for the version with RPython’s meta-tracing, and
SOMpg for one with Truffle’s partial evaluation. SOMpg
builds on the Truffle framework with its TruffleDSL [Humer
et al. 2014]. SOMyr however is built with ad hoc techniques
to realize a self-optimizing interpreter, which are kept as
comparable to SOMpg as possible. Generally, the structure
of the AST is the same for both interpreters. Language func-
tionality such as method invocation, field access, or iteration
constructs are represented in the same way as AST nodes.

Some aspects of the interpreters are different however.
SOMpE uses the TruffleDSL to implement basic operations
such as arithmetics and comparisons. TruffleDSL signifi-
cantly simplifies self-optimization based on the types ob-
served at runtime and ensures that arithmetic operations can
work directly on Java’s primitive types long and double
without requiring boxing. Boxing means that some primitive
value is stored in a specifically allocated object. With Java’s
unboxed versions of primitive types, we avoid the additional
allocation for the object and the pointer indirection when op-
erating on the values.

SOMpyit on RPython relies however on a uniform boxing
of all primitive values as objects. With the absence of Truf-
fleDSL for RPython, the minimal boxing approach used in
SOMpg was not practical because the RPython type system
requires a common root type but does not support Java’s im-
plicit boxing of primitive types. Since tracing compilation
eliminates the boxing within a compilation unit, it makes



only a difference in the interpreted execution and between
compilation units. Thus, between compilation units, there
might be additional overhead for allocations that are not
done in SOMpg. For the purpose of this paper, we consider
this difference acceptable (cf. sections 4.3 and 4.4).

2.6 Assessing the Impact of the Meta-Compilation
Strategies

To assess the benefits and drawbacks of meta-tracing and
partial evaluation from the perspective of language imple-
menters, we determine the impact of a number of interpreter
optimizations on interpretation and peak performance. Fur-
thermore, we assess the implementation sizes to gain an in-
tuition of how the required engineering effort compares for
both approaches.

Optimizations. To use a representative set of optimiza-
tions, we identify tree main categories. Structural optimiza-
tions are applied based on information that can be derived at
parse time. Dynamic optimizations require runtime knowl-
edge to specialize execution based on observed values or
types. Lowerings are reimplementations of standard library
functionality that is performance critical inside the inter-
preter. These three groups cover a wide range of possible
optimizations. For each category, we pick representative op-
timizations and detail them in section 3.

Performance Evaluation. For the performance evaluation,
we consider the pure interpreted performance and the com-
piled peak performance. Both aspects can be important.
While interpreter speed can be negligible for long-running
server applications, it is critical for short-lived programs
such as shell scripts. We assess the impact of the optimiza-
tions for both modes to also determine whether they are
equally beneficial for interpretation and peak performance,
or whether they might have a negative effect on one of them.

Implementation Size of Optimizations. To gain some in-
dication for potential differences in engineering effort, we
assess the implementation size of the applied optimizations.
However, this is not a systematic study of the engineering ef-
fort. On the one hand RPython and Java are two very differ-
ent languages making a proper comparison hard, and on the
other hand, implementation size is only a weak predictor for
effort. Nonetheless, implementation size gives an intuition
and enables us to position the two approaches also with re-
spect to the size of other language implementation projects.
For instance in a research setting, an interpreter prototype
might be implemented in 2.5K lines of code (LOC). A ma-
turing interpreter might be 10 KLOC in size, but a state-of-
the-art VM is usually larger than 100 KLOC.

3. [Evaluated Optimization Techniques

The optimizations investigated in this study are chose from
the group of structural and dynamic optimizations as well as
lowering of language and library functionality.

3.1 Structural Optimizations

Literature discusses many optimizations that can be per-
formed after parsing a program, without requiring dynamic
information. We chose a few to determine their impact in the
context of meta-compilation. Note, each optimization has a
shorthand by which we refer to it throughout the paper.

Distinguish Variable Accesses in Local and Non-Local
Lexical Scopes (opt. local vars) In SOM, closures can
capture variables of their lexical scope. A variable access
thus needs to determine in which lexical scope the variable
is to be found, then traverse the scope chain, and finally do
the variable access. SOM’s compiler can statically deter-
mine whether a variable access is in the local scope. At run-
time, it might be faster to avoid the tests and branches of the
generic variable access implementation. Thus, in addition to
the generic AST node for variable access, this optimization
introduces an AST node to access local variables directly.

Handle Non-Local Returns Only in Methods including
Them (catch-return nodes) In recursive AST interpreters
such as SOMpg and SOMyr, non-local returns are imple-
mented using exceptions that unwind the stack until the
method is found from that the non-local return needs to exit.
A naive implementation handles the return exception simply
in every method and checks whether it was the target. How-
ever, the setup for exception handlers as well as catching and
checking an exception has a runtime cost on most platforms,
and the handling is only necessary in methods that actually
contain lexically embedded non-local returns. Thus, it might
be beneficial to do the handling only in methods that need it.
Since it is known after parsing a method whether it contains
any non-local returns, the handling can be represented as an
extra AST node that wraps the body of the method and is
only added when necessary.

Only Expose Variables in Lexical Scope that are Accessed
(min. escaping vars, SOMyr only) Truffle relies on a
rigid framework that realizes temporary variables of meth-
ods with Frame objects. The partial evaluator checks that
these frames do not escape the compilation unit, so that they
do not need to be allocated. However, for lexical scoping,
frame objects can escape as part of a closure object. In Truf-
fle, such escaping frames need to be materialized explicitly.
Instead of using such a strict approach, RPython works the
other way around. An object can be marked as potentially
virtual, so that its allocation is more likely to be avoided
depending on its use in a trace.

To help the implicit approach of RPython in SOMyyr, the
frames can be structured to minimize the elements that need
to escape to realize closures. At method compilation time,
it is determined which variables are accessed from an inner
lexical scope and only those are kept in an array that can
escape. The optimizer then ideally sees that the frame object
itself does not need to be allocated. Since Truffle fixes the



structure of frames, this optimization is not applicable to
SOMpE.

Avoid Letting Unused Lexical Scopes Escape (min. escap-
ing closures) While the previous optimization tries to min-
imize the escaping of frames by separating variables, this
optimization determines for the whole lexical scope whether
it is needed in an inner scope or not. When the scope is not
used, the frame object is not passed to the closure object and
therefore will not escape. The optimization is realized by us-
ing a second AST node type that creates the closure object
with null instead of the frame object.

3.2 Dynamic Optimizations

While the discussed static optimizations can also be applied
to other types of interpreters, the dynamic optimizations are
self-optimizations that require runtime information.

Cache Lookup of Global Values (cache globals) In SOM,
values that are globally accessible in the language are stored
in a hash table. Since classes as well as for instance t rue,
false, and nil are globals, accessing the hash table is a
common operation. To avoid the hash table lookup at run-
time, globals are represented as association objects that can
be cached after the initial lookup in a specialized AST node.
The association object is necessary, because globals can be
changed. For t rue, false, and nil, we optimistically as-
sume that they are not changed and specialize the access to
a node that returns the corresponding constants directly.

Caching Method Lookups and Block Invocations (inline
caching) In dynamic languages, inline caching of method
lookups is common to avoid the overhead of traversing the
class hierarchy at runtime for each method invocation. In
self-optimizing interpreters, this is represented as a chain of
nodes, which encodes the lookup results for different kinds
of objects as part of the caller’s AST. In addition to avoiding
the lookup, this technique also exposes the target method as
a constant to the compiler which in turn can decide to inline
a method to enable further optimizations. Similar to caching
method lookups, it is beneficial to cache the code of closures
at their call sites to enable inlining.

In both cases, the node chains are structured in a way
that each node checks whether its cached value applies to
the current object or closure, and if that is not the case, it
delegates to the next node in the chain. At the end of the
chain, an uninitialized node either does the lookup operation
or in case the chain grows too large, it is replaced by a
fallback node that always performs the lookup.

Type Specialization of Variable Accesses (typed vars, SOMpg,
only) As mentioned earlier, Truffle uses Frame objects to
implement local variables. For optimization, it tracks the
types stored in a frame’s slots, i.e., of local variables. For
SOMpg, Truffle thus stores 1ong and double values as
primitives, which avoids the overhead of boxing. Further-
more, SOMpg’s variable access nodes specialize themselves

based on this type information to ensure that all operations
in this part of an AST work directly with unboxed values.

Since SOMyr uses uniform boxing, this optimization is
not applied.

Type Specialization of Argument Accesses (typed args,
SOMpg only) With the type specialization of SOMpg’s
access to local variables, it might be beneficial to type spe-
cialize also the access to a method’s arguments. In Truffle,
arguments to method invocations are passed as an Object
array. Thus, this optimization takes the arguments passed in
the object array and stores them into the frame object to en-
able type specialization. While this does not avoid the box-
ing of primitive values on method call boundaries, it ensures
that they are unboxed and operations on these arguments are
type specialized in the body of a method.

Note, since the variable access optimization is not appli-
cable to SOMyr, this optimization is not applicable either.

Specialization of Object Field Access and Object Layout
(typed fields) To avoid boxing, it is desirable to store un-
boxed values into object fields as well. Truffle provides sup-
port for a general object storage model [WoB et al. 2014]
that is optimized for class-less languages such as JavaScript,
and is similar to maps in Self [Chambers et al. 1989]. To
have identical strategies, SOMpg and SOMyr use a simpli-
fied solution that keeps track of how object fields are used
at runtime, so that 1ong and double values can be stored
directly in the primitive slots of an object. For each SOM
class, an object layout is maintained that maps the observed
field types to either a storage slot for primitive values or to a
slot for objects. The field access nodes in the AST specialize
themselves according to the object layout that is determined
at runtime to enable direct access to the corresponding slot.

Specializing Array Representation (array strategies) Sim-
ilar to other dynamic languages, SOM only has generic ob-
ject arrays. To avoid the overhead of boxing, we implement
strategies [Bolz et al. 2013] for arrays. It is similar to the
idea of specializing the access and layout of object fields.
However, here the goal is to avoid boxing for arrays that are
used only for either 1ong, double, or boolean values.
In these cases, we specialize the storage to an array of the
primitive type. In the case of booleans, it also reduces the
size of the array from a 64-bit pointer to a byte per element.

Specializing Basic Operations (inline basic ops., SOMpg
only) As in other dynamic languages, SOM’s basic op-
erations such as arithmetics and comparisons are normal
method invocations on objects. Thus for instance the expres-
sion 1 + 2 causes the plus method to be invoked on the 1
object. While this allows developers to define for instance
addition for arbitrary classes, in most cases arithmetics on
numbers still use the built-in method. To avoid unneces-
sary method lookups and the overhead of method invocation,
we specialize the AST nodes of basic operations directly to



the built-in semantics when the type information obtained at
runtime indicate that it is possible.

Note, since this relies on TruffleDSL and its handling
of the possible polymorphism for such specializations, this
optimization is not applied to SOMyr.

3.3 Lowerings

The last category of optimizations covers the reimplementa-
tion of standard library functionality as part of the interpreter
to gain performance.

Control Structures (lower control structures) Similar to
specializing basic operations, we specialize control struc-
tures for conditionals and loops. In SOM, conditional struc-
tures are realized as polymorphic methods on boolean ob-
jects and loops are polymorphic methods on closures. An
optimization of these constructs is of special interest because
they are often used with lexically defined closures. Thus, in
the context of one method, the closures reaching a control
structure are statically known. Thus, specializing the control
structures on the AST level does not only avoid overhead for
method invocations done in the language-level implementa-
tion, but also utilizes directly the static knowledge about the
program structure and exposes the closure code directly for
further compiler optimizations such as inlining.

In SOMyr, such specializations have the benefit of ex-
posing the language-level loops to the implementation by
communicating them directly to the meta-tracer with trace
merge points (cf. section 2.4).

Common Library Operations (lower common ops) In
addition to generic control structures, the SOM library
provides many commonly used operations. We selected
boolean, numeric, array copying, and array iteration oper-
ations for implementation at the interpreter level.

Similar to the specialization of basic operations and con-
trol structures, these optimizations are applied optimistically
on the AST nodes that do the corresponding method invoca-
tion if the observed runtime types permit it.

4. Evaluation

Before discussing the results of the comparisons, we detail
the methodology used to obtain and assess the performance
and give a brief characterization of the used benchmarks.

4.1 Methodology

With the non-determinism in modern systems, JIT compila-
tion, and garbage collection, we need to account for the in-
fluence of variables outside of our control. Thus, we execute
each benchmark at least 500 times within the same VM in-
stance. This guarantees that we have at least 100 continuous
measurements for assessing steady state performance. The
steady state is determined informally by examining plots of
the measurements for each benchmark to confirm that the
last 100 measurements do not show signs of compilation.

The benchmarks are executed on a system with two quad-
core Intel Xeons E5520 processors at 2.26 GHz with 8 GB of
memory and runs Ubuntu Linux with kernel 3.11, PyPy 2.4-
dev, and Java 1.8.0_11 with HotSpot 25.11-b03.

Measurement Setup. Pure interpretation performance for
SOMyyr is measured with executables without meta-tracing
support. Similarly, we measure the pure interpretation per-
formance of SOMpg on Hotspot without the partial eval-
uation and compilation support of Truffle. Thus, in both
cases, there is no additional overhead, e. g., for compiler re-
lated bookkeeping. However, SOMpg still benefits from the
HotSpot’s normal Java JIT compilation, while SOMyr is a
simple interpreter executing directly without any underly-
ing JIT compilation. We chose this setup to avoid measuring
overhead from the meta-JIT compiler infrastructure and fo-
cus on the interpreter-related optimizations. Since we report
results after warmup, the results for SOMpg and SOMyit
represent the ideal interpreter performance in both cases.

For measuring the peak performance, we enable meta-
compilation in both cases. Thus, the interpreter first executes
with additional profiling overhead, and after completing a
warmup phase, the benchmarks will execute solely in opti-
mized native code. To assess the capability of the used meta-
compilation approach, we report only the measurements af-
ter warmup is completed, i. e., ideal peak performance.

SOMpg uses a minimum heap size of 2GB to reduce
noise from the GC. When measuring peak performance,
Truffle is configured to avoid parallel compilation to be
more comparable with RPython, which does not have any
parallel execution. However, measurement errors for SOMpg
are generally higher than for SOMy, because the JVM
performs various operations in parallel and reschedules the
benchmark thread on other cores. RPython’s runtime system
on the other hand is completely sequential, leading to lower
measurement errors.

Benchmark Suite. The used benchmarks cover various as-
pects of VMs. DeltaBlue and Richards test among other
things how well polymorphic method invocations are opti-
mized. Json is a parser benchmark measuring string opera-
tions and object creation. PageRank and GraphSearch tra-
verse large data structures of objects and arrays. Mandel-
brot and n-body are classic numerical benchmarks focus-
ing on floating point performance. Other benchmarks such
as Fannkuch, n-queens, sieve of Eratosthenes, array permu-
tations, bubble sort, and quick sort measure array access
and logical operations. The storage benchmark is a stress
test for garbage collectors. A few microbenchmarks test the
performance, e. g., of loops, field access, and integer addi-
tion. While these benchmarks are comparably small and can-
not compete with application benchmark suites such as Da-
Capo [Blackburn et al. 2006], they test a relevant range of
features and indicate the order of magnitude the discussed
optimizations have on interpretation and peak performance.
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Figure 2. Impact of optimizations on SOMyr’s interpreter
performance. Experiments are ordered by geometric mean
of the speedup over all benchmarks, compared to the base-
line. Each dot represents a benchmark. The gray vertical bar
indicates the geometric mean. The results show that the op-
timization for minimizing escaping variables slows the in-
terpreter down. Inline caching and lowering of library func-
tionality give substantial benefits.

Assessing Optimization Impact. As in classic compilers,
optimizations interact with each other, and varying the order
in which they are applied can have significant implications
on the observed gains they provide. To minimize the impact
of these interdependencies, we assess the optimizations by
comparing against a baseline that includes all optimizations.
Thus, the obtained results indicate the gain of a specific op-
timization for the scenario where all the other optimizations
have been applied already. While this might lead to underes-
timating the value of an optimization for gradually improv-
ing the performance of a system, we think it reflects more
accurately the expected gains in optimized systems.

4.2 Impact on Interpreter

Before assessing the impact of the meta-compilation ap-
proach, we discuss the optimization’s impact on interpreta-
tion performance.

Figure 2 depicts for each of the optimizations the bench-
mark results as separate points representing the average
speedup over the baseline version of SOMyr. All dots on the
right of the 1-line indicate speedup, while all dots left from
the line indicate slowdowns. Furthermore, the optimizations
are ordered by the geometric mean over all benchmarks,
which is indicated for each optimization with a gray bar.
Based on this ordering, all optimizations listed above the
baseline cause on average a slowdown, while all optimiza-
tions listed below the baseline result in a speedup. Note, the
x-axis uses a logarithmic scale.

The optimization for minimizing escaping of variables
causes on average a slowdown of 9.6%. This is not sur-
prising, since the interpreter has to allocate additional data
structures for each method call and the optimization can only
benefit the JIT compiler. Similarly, typed fields cause a slow-
down of 5.3%. Since SOM\r uses uniform boxing, the inter-
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Figure 3. SOMpg optimization impact on interpreter perfor-
mance. Type-based specialization introduce overhead. Low-
ering of library functionality and direct inlining of basic op-
erations on the AST-level are highly beneficial.

preter creates the object after reading from a field, and thus,
the optimization is not benefitial. Instead, the added com-
plexity of the type-specialization nodes causes a slowdown.
The optimizations to separate catch-return nodes (0.2%),
minimizing escaping of closures (0.2%), and the extra nodes
for accessing local variables (0.8%) do not make a signif-
icant difference for the interpreter’s performance. The dy-
namic optimizations for caching the association object of
globals (1.4%) and array strategies (2%) do not provide a
significant improvement either.

The remaining optimizations more clearly improve the in-
terpreter performance of SOMyr. The largest gains for inter-
preter performance come from the lowering of control struc-
tures. Here we see an average gain of 1.6x (min. —1.6%,
max. 4.5x). This is expected because their implementation
in the standard library rely on polymorphic method invo-
cations and the loop implementations all map onto the ba-
sic while loop in the interpreter. Especially for for-loops,
the runtime overhead is much smaller when they are imple-
mented directly in the interpreter because it avoids multiple
method invocations and the counting is done in RPython in-
stead of requiring language-level operations. Inline caching
for methods and blocks (21%) gives also significant speedup
based on runtime feedback.

For SOMpg, fig. 3 shows that the complexity introduced
for the type-related specializations leads to overhead during
interpretation. The typed arguments optimization makes the
interpreter on average 18.3% slower. For typed variables,
we see 8.9% overhead. Thus, if only interpreter speed is
relevant, these optimizations are better left out. For typed
object fields, the picture is less clear. On average, they cause
a slowdown of 4.1%, but range from 16% slowdown to 4.5%
speedup. The effect for SOMpg is more possitive than for
SOMyyt because of the differences in boxing, but overall the
optimiziation is not benefitial for interpreted execution.

Caching of globals (0.4%), optimizing access to local
variables (3%), and inline caching (4.6%) give only minimal
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Figure 4. SOMyr optimization impact on peak perfor-
mance. Most optimizations do not affect average perfor-
mance. Only lowering of library functionality gives substan-
tial performance gains.

average speedups for the interpreter. The low gains from
inline caching are somewhat surprising. However, SOMyt
did not inline basic operations as SOMpg does. Thus, we
assume that inlining of basic operations, which gives in itself
a major speedup of 1.9x, hides the gains that inline caching
of blocks and methods gives on an interpreter without it.

Array strategies give a speedup of 17.6% (min. —4.2%,
max. 72.4%) and is with the different boxing strategy
of SOMpg more benefitial for the interpreter. Similar to
SOMwr, lowering library functionality to the interpreter
level gives large improvements. Lowering common oper-
ations gives an average speedup of 1.6x and lowering con-
trol structures gives 2.1x, confirming the usefulness of these
optimizations for interpreters in general.

4.3 Peak Performance

While some of the studied optimizations improve interpreted
performance significantly, others cause slowdowns. How-
ever, especially the ones causing slowdowns are meant to
improve peak performance for the meta-compilation with
tracing or partial evaluation.

Meta-Tracing. Figure 4 shows the results for SOMyr with
meta-tracing enabled. The first noticeable result is that 6
out of 10 optimizations have barely any effect on the opti-
mized peak performance. The optimizations to cache glob-
als (0%), minimize escaping closures (0.1%), optimize local
variable access (0.2%), the separate nodes to catch returns
(0.2%), inline caching (0.2%), and minimize escaping vari-
ables (0.7%) affect average performance only minimally.

For the optimization of local variable access and inline
caching, this result is expected. The trace optimizer elimi-
nate tests on compile-time constants and other unnecessary
operations. Furthermore, inline caching is only useful for the
interpreter, because SOMyr uses RPython’s @elidable
(cf. section 2.4) to enable method lookup optimization. The
lookup is marked as @elidable so that the optimizer
knows its results can be considered runtime constants to
avoid lookup overhead.

The optimization to minimize escaping of variables
shows variability from a 5.1% slowdown to a to 6.8%
speedup. Thus, there is some observable benefit, but overall
it is not worth the added complexity, especially since the
interpreter performance is significantly reduced.

Array strategies gives an average speedup of 4.7% (min.
—29.9%, max. 69.3%). The additional complexity can have
a negative impact, but also gives a signficant speedup on
benchmarks like the sorts that use integer arrays. For typed
fields, the results are similar with an average speedup of 7%
(min. —8.2%, max. 77.3%). For benchmarks that use object
fields for integers and doubles, we see speedups, while oth-
ers show small slowdowns from the added complexity.

The lowering of library functionality is not only benefi-
cial for the interpreter but also for meta-tracing. For common
operations, we see a speedup of 11.5% (min. —21.6%, max.
1.8x). The lowering provides two main benefits. On the one
hand, the intended functionality is expressed more directly in
the recorded trace. For instance for simple comparisons this
can make a significant difference, because instead of build-
ing, e.g., a larger or equal comparison with smaller than
and negation, the direct comparison can be used. When lay-
ering abstractions on top of each other, these effects accu-
mulate, especially since trace guards might prevent further
optimizations. On the other hand, lowering typically reduce
the number of operations that are in a trace and thus need to
be optimized. Since RPython uses trace length as a criterion
for compilation, lowering functionality from the library into
the interpreter can increase the size of user programs that are
acceptable for compilation.

For the lowering of control structures, we see a speedup
of 1.5x (min. —0.1%, max. 4.1x). These speedups are
based on the effects for common operations, but also on
the additional trace merge points introduced for loop con-
structs. With these merge points, we communicate directly
to RPython where user-level loops are and thereby provide
more precise information for compilation.

Generally, we can conclude that only few optimizations
have a significant positive impact when meta-tracing is used.
Specifically, the lowering of library functionality into the
interpreter helps to expose more details about the execution
semantics, which enables better optimizations. The typing
of fields and array strategies are useful, but highly specific
to the language usage.

Partial Evaluation. The first observation based on fig. 5
is that compared to SOMyt, more of SOMpg’s optimiza-
tions have a positive effect on performance, which is also
larger on average. Added catch-return node (—1.1%), typed
arguments (—1.1%), minimization of escaping closures
(—=0.1%)), and direct access to variables in local scope
(0.3%) have only insignificant effect on peak performance.
Typed variables give an average speedup of (4.6%) (min.
—13.9%, max. 32.6%). Thus, there is some speedup, how-



catch-return nodes — *«

) _typed args — &
min. escaping closures —
baseline —

opt. local vars —

- typedvars —**

inline basic ops. — o o

® o

array strategies —* 1;" o0 e
lower common ops —  *w . .
typed fields —  *&e @ve * . .
cache globals = #e | 8. . & .
inline caching — = % *® PR TR NS .
lower control structures—I ? o -°I '--I-’I Io-l-- R
no o o o o o o co 8 8
0O N W o o o o oo d
SO~ ~ o o <+ O Neow 2 Y

Speedup Factor
(higher is better, logarithmic scale)

Figure 5. SOMpg optimization impact on peak perfor-
mance. Overall, the impact of optimizations in case of partial
evaluation is larger. Lowering of control structures and inline
caching are the most beneficial optimizations.

ever, in most situations partial evaluation is able to achieve
the same effect without the type specialization.

Inlining of basic operations, which avoids full method
calls, e.g., for arithmetic operations, shows a speedup of
5.8% (min. —5.8%, max. 1.6x). It shows that in many cases
the optimizer is able to remove the overhead of method calls.
However, the optimization provides significant speedup in
other cases as for instance complex loop conditions.

Array strategies give a speedup of 18.1% (min. —19%,
max. 2x), which is comparable to the speedup for SOMyr,
but slightly higher.

The lowering of common operations gives an average
speedup of 18.7% (min. —6.5%, max. 2.8x). The results are
similar to the once for SOMyy, indicating the general use-
fulness of these optimization independent of the technique
to determine compilation units. Furthermore, the benefit of
the optimization here is again higher for SOMpg.

The optimization for object fields improves performance
significantly. For the SOMpg interpreter, it was causing a
slowdown. With the partial evaluation and subsequent com-
pilation however, we see a speedup of 41.1% (min. —5.8%,
max. 11.2x). Thus, typed object fields contribute signifi-
cantly to the overall peak performance, despite their nega-
tive impact on interpreter performance. The benefit of typing
variables and arguments seems to be however minimal. Here
the optimizer has already sufficient information to generate
efficient code regardlessly.

The caching of globals gives an average speedup of
79.9% (min. —3%, max. 10x). Compared to RPython, on
Truffle this form of node specialization is the only way to
communicate runtime constants to the optimizer and as the
results show, it is important for the overall performance.

Custom inline caching at method call sites and block in-
vocations is the second most beneficial optimization. It re-
sults on average in a speedup of 3x (min. 0%, max. 19.6x).
On SOMyr, this optimization did not give any improve-
ments because RPython offers annotations that communi-

cate the same information to the compiler. With Truffle how-
ever, inline caching is only done by chaining nodes with the
cached data to the call site AST node. While tracing intrin-
sically inlines across methods, Truffle needs these caching
nodes to see candidates for inlining. Since inlining enables
many other classic compiler optimizations, it is one of the
the most beneficial optimizations for SOMpg.

The lowering of control structures is the most beneficial
optimization for SOMpg. It gives an average speedup of 4.3x
(min. —0.2%, max. 232.6x). Similar to SOMyr, expressing
the semantics of loops and other control flow structures re-
sults in significant performance improvements. In Truffle,
similar to RPython, the control structures communicate ad-
ditional information to the compilation backend. In SOMpg,
loops record loop counter to direct the adaptive compilation
and branching constructs record branch profiles to enable
optimizations based on branch probabilities.

Conclusion. Considering all optimizations that are benfi-
tial on average, and show for at least one benchmark larger
gains, we find that array strategies, typed fields, and lower-
ing of common operations and control structures are highly
relevant for both meta-compilation approaches.

Inline caching and caching of globals is realized with
annotations in RPython’s meta-tracing and thus, does not
require the optimizations based on node specialization, even
so, they are benefitial for the interpretered mode. However,
with partial evaluation, the node specializations for these
two optimizations provide significant speedup. Inlining of
basic operations is benefital for partial evaluation. While we
did not apply this optimization to SOMyr, it is unlikely
that it provides benefits, since the same result is already
achieved with the annotations that are used for basic inline
caching. The typing of variables was also only applied to
SOMpg. Here it improves peak performance. For SOMpyr,
it might in some cases also improve performance, but the
added complexity might lead to a result like, e. g., for the
minimizing of escaping variables, which does not improve
peak performance on average.

Thus, overall we conclude that partial evaluation benefits
more from the optimizations in our experiments by gener-
ating higher speedups. Furthermore, we conclude that more
optimizations are benefitial, because partial evaluation can-
not provide the same implicit specialization based on run-
time information that meta-tracing provides implicitly.

4.4 SOMMT VS. SOMPE

To compare the overall performance of SOMyr and SOMpg,
we use their respective baseline version, i.e., including all
optimizations. Furthermore, we compare their performance
to Java. The compiled performance is compared to the re-
sults for the HotSpot server compiler and the interpreted
performance to the Java interpreter (-Xint). Note, the re-
sults for the compiled and interpreted modes are not compa-
rable. Since the performance difference is at least one order
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Figure 6. SOM performance compared to Java. The compiled performance are the SOMs with JIT compiler compared to
HotSpot’s peak performance. The interpreted performance is compared to the HotSpot interpreter (-Xint).

of magnitude, the benchmarks were run with different pa-
rameters. Furthermore, cross-language benchmarking is in-
herently problematic. While the benchmarks are very simi-
lar, they are not identical and, the VMs executing them are
tuned based on how the constructs are typically used, which
differ between languages. Thus, the reported comparison to
Java is merely an indication for the general order of magni-
tude one can expect, but no reliable predictor.

Figure 6 shows that SOM\7’s peak performance is on this
benchmark set on average 3x (min. 1.5x, max. 11.5x) slower
than Java 8 on HotSpot. SOMpg is about 2.3x (min. 3.9%,
max. 4.9x) slower. Thus, overall both SOMs reach the same
order of magnitude of performance as Java, even so they are
simple interpreters running on top of generic JIT compila-
tion frameworks. Thus, the overall goal of achieving com-
petitive performance is reached by both approaches. How-
ever, SOMyr is slightly slower than SOMpg. At this point,
we are not able to attribute this performance difference to
any conceptual differences between meta-tracing and partial
evaluation as underlying technique. Instead, when investi-
gating the performance differences, we see indications that
the performance differences are more likely an indication of
the amount of engineering that went into the RPython and
Truffle projects, which results in Truffle and Graal producing
more efficient machine code, while RPython has remaining
optimization opportunities.

The performance of SOMyr being only interpreted is
about 5.6x (min. 1.6x, max. 15.7x) lower than that of the
Java 8 interpreter. Similarly, SOMpg is about 6.3x (min.
1.9x, max. 15.7x) slower than the Java 8 interpreter. Here
we see some benchmarks being more than an order of mag-
nitude slower. Such high overhead can become problematic
when applications have short runtimes and very irregular be-
havior, because only parts of the application are executed as
compiled code with good performance.

4.5 Implementation Sizes

In addition to the achievable performance, engineering as-
pects can be of importance for language implementations
as well. To gain some insight of how partial evaluation and
meta-tracing compare in that regard, we determine the im-
plementation sizes of the experiments. However, in addi-
tion to the weak insights measurement of implementation
size provides, it needs to be noted that the obtained numbers
are only directly comparable for experiments with the same
SOM implementation. Since Java and RPython have signif-
icant syntactical and semantic differences, a direct compari-
son is not possible. Instead, we compare the relative numbers
with respect to the corresponding baseline implementation.
The reported percentages are based on the implementation
without an optimization as denominator so that the percent-
age indicates the change needed to add the optimization.

As first indication, we compare the minimal versions of
the SOM interpreters without optimizations with the base-
line versions. SOMpyt has 3455 lines of code (LOC, exclud-
ing blank lines and comments) with all optimizations added
it grows to 5414 LOC which is a 57% increase. The minimal
version of SOMpg has 5424 LOC and grows to 11037 LOC
with all optimizations, which is an increase of 103%. Thus,
SOMpg is overall larger, which is expected since we apply
more optimizations.

Table 1 lists the data for all experiments incl. absolute
numbers. Comparing the relative increases of implementa-
tion sizes for SOMyr and SOMpg indicates that the opti-
mizations are roughly of the same size in both cases. The
only outlier is the implementation of inline caching which is
larger for SOMpg. Here the language differences between
RPython and Java are becoming apparent and causes the
SOMpg implementation to be much more concise.

Conclusion. Considering performance and implementa-
tion sizes combined, we see for SOMyr an overall peak



SOMpmt  SOMpg SOMur SOMpg

LOC% LOC% LOC ins. del. LOC ins. del.
baseline 0.0 0.0 5414 0 0 11037 0 0
typed args 14 10886 204 383
array strategies 11.6 9.0 4851 37 829 10125 126 1233
min. escaping closures 0.4 0.9 5394 5 30 10943 42 152
catch-return nodes 0.3 0.4 5397 12 36 10995 54 107
lower control structures 12.2 9.9 4824 8 790 10045 9 1160
inline caching 2.0 7.9 5307 1 158 10231 95 1095
inline basic ops. 3.7 10647 0 430
cache globals 0.5 1.7 5386 2 41 10853 14 239
opt. local vars 1.0 1.6 5359 49 135 10863 70 284
typed fields 10.2 11.1 4912 18 698 9933 39 1393
min. escaping vars 1.7 5322 20 130
lower common ops 10.2 9.1 4912 2 678 10115 1 1083
typed vars 1.1 10915 9 161

Table 1. Implementation sizes of the implementations without the optimization. LOC: Lines of code excluding comments and
empty lines, LOC %: increase of LOC to add optimization, ins./del.: inserted and deleted lines as reported by git

performance increase of 1.8x (min. —10.5%, max. 5.4x) for
going from the minimal to the baseline version. The inter-
preter performance improves by 2.4x (min. 41.5%, max.
3.9x). Note, the minimal version includes one trace merge
point in the while loop to enable trace compilation (cf.
section 2.4). For SOMpg, the peak performance improves by
78.1x (min. 22.8x, max. 342.4x) from the minimal to the
baseline version. SOMpg’s interpreter speed improves by 4x
(min. 2.1x, max. 7.3x). SOMpg also implements while in
the interpreter, but it does not provide the same benefits for
the partial evaluator as it does for the meta-tracer.

We conclude that for partial evaluation the optimizations
are essential to gain performance. For meta-tracing however,
they are much less essential and can be used more gradually
to improve the performance for specific use cases.

5. Discussion

Section 2 already discussed general questions of the design
of this study, its conclusiveness, and the generalizability of
our results. Here we address a few more technical questions.

Performance Results. After studying the impact of various
optimization on SOMyt and SOMpg, the question arrises
whether the observed performance effects are generalizable
to other languages. Without further experiments, it needs to
be assumed that they are not directly transferable. To give
but a single example, for SOMpg we observed no benefit
for peak performance from specializing method argument
access based on their types. On the contrary, the interpreter
showed clear performance drawbacks. However, in SOM,
arguments are not assignable and methods are generally
short. The usage pattern for arguments can thus be different
in languages with assignable argument variables such as
Java. Thus, other languages potentially benefit from this
optimization. Nonetheless, the observations made here can

provide initial guidance for other language implementations
to prioritize the optimization effort.

Another aspect that has not been studied is the impact
of the optimizations on memory usage. The general require-
ment for self-optimizing interpreters is that the AST sta-
bilizes at some point. This implies that self-modification
should only introduce an upper bound of nodes, which limits
the additional memory requirements. However, it has not yet
been studied whether these optimizations cause significant
additional memory consumption, which might be problem-
atic in large applications.

Meta-Tracing vs. Partial Evaluation. A major difference
between the two approaches is their overhead during inter-
pretation. Partial evaluation requires the interpreter to record
information about the executed code for instance branch
probabilities and unused code paths. This information is
used by the compiler to guide optimization together with
heuristics, e. g., to avoid compilation of exception handling
in the standard case. While sampling might reduce the over-
head of collecting the runtime feedback, Truffle does cur-
rently use a precise approach that is active at all times, lead-
ing to a high overhead during interpretation.

With meta-tracing, the interpreter tracks execution only at
the trace merge points. Only during tracing it records the ad-
ditional information needed for optimization. Thus, interpre-
tation performance might have conceptual advantages over a
system with partial evaluation.

RPython vs. Trufflee. When implementing a language,
tooling can be a relevant deciding factor for RPython or
Truffle. When optimizing an implementation, tools need to
make it easy to understand and relate the optimizations done
by the respective toolchains to an input program in the lan-
guage that is implemented. Based on the current status of



the tools provided with both systems, there seems to be
some benefit for meta-tracing. Since all optimizations are
based on traces that linearize control flow, the tools are able
to attribute relatively accurately the optimized instructions
in a trace to the elements of the language implementation
they originate from. In practice, this means that a program
is relatively easily recognized in a trace, which supports
the understandability of the results. For Truffle on the other
hand, the available tool for inspecting the control- and data-
flow graph of a program does not maintain the connection to
the language implementation. Part of the issue is that some
of Graal’s compiler optimizations can duplicate or merge
nodes, which complicates the mapping to the input program.

Another practical aspect are the platforms’ capabilities
and their ecosystems. Since Truffle builds on the JVM, sup-
port for threads, a memory model, and a wide range of soft-
ware is implicitly give. Furthermore, the use of JVM-based
software does not introduce a compilation boundary and
thus, just-in-time compilation can optimize a Truffle-based
language together with other libraries. RPython on the other
hand does not come with comprehensive support for threads.
Furthermore, its integration into the surrounding ecosystem
is based on a foreign function interface (rffi), which is a com-
pilation boundary for the tracing compiler.

One final difference between the two systems is their
warmup performance. Currently, Truffle does not opti-
mize the time it takes from starting an application un-
til it reaches peak performance. Thus, we refrained from
studying warmup performance. However, in our experience,
RPython’s warmup is much faster than the warmup observed
for Truffle. One aspect of that could be the extensive runtime
profiling Truffle-based interpreters do. In section 4.2, we re-
ported the interpreter performance of SOMpg without this
profiling enabled (cf. section 4.1), since it is currently not
optimized. For compilation it is however essential and can
slow down the interpreter significantly and thereby having a
negative impact on overall application performance.

6. Related Work

As far as we are aware, there is no other study comparing
meta-tracing and partial evaluation in detail. The closest re-
lated work is by Marr et al. [2014]. They assess whether
both approaches deliver on their promises, but, the compar-
ison only regards the overall performance and compares in
the case of meta-tracing a bytecode-based interpreter with a
self-optimizing AST interpreter using partial evaluation.

Related to Wiirthinger et al. [2012]’s self-optimizing in-
terpreters is for instance quickening and superinstructions
focused on bytecode-based interpreters [Proebsting 1995;
Casey et al. 2007; Brunthaler 2010].

The optimizations proposed for self-optimizing inter-
preters cover a wide range of topics and the optimizations
discussed in this paper are either directly based on the liter-
ature or small variations. Wiirthinger et al. [2012] initially

discussed operation specialization by type, dynamic data
type specialization, type specialization of local variable and
field accesses, boxing elimination, and polymorphic inline
caching (cf. also Wiirthinger et al. [2013]). Later, W60 et al.
[2014] detailed the strategy for field access optimization
with an object storage model. Kalibera et al. [2014] dis-
cussed the challenges of a self-optimizing interpreter for the
R language to address the dynamic and lazy nature of R.
They detail a number of structural optimizations similar to
the ones discussed here, dynamic operation and variable spe-
cialization, inline caching, data type specializations, as well
as a profiling-based optimization of R’s view feature, which
is a complex language feature that has different tradeoffs
depending on the size of vectors it is used on. A similarly
complex language feature that has been optimized in this
context is Python’s generators [Zhang et al. 2014].

For meta-tracing, Bolz and Tratt [2013] discuss the im-
pact on the VM design and implementation. They detail how
an implementation needs to expose for instance data depen-
dencies, compile time constants, and elidable computations
clearly to the tracer for best optimization results. Generally,
they advise to expose runtime constants also on the level of
the used data structures. Thus, to prefer fixed sized arrays
over variable sized lists, and to use known techniques such as
maps [Chambers et al. 1989] to optimize objects to provide
the tracer and subsequent optimization with as much infor-
mation about runtime constants as possible. In this study, we
find that these general suggestions apply to both compilation
techniques, meta-tracing as well as partial evaluation.

7. Conclusion and Future Work

This study compares tracing and partial evaluation as meta-
compilation techniques for self-optimizing AST interpreters.
The results indicate that both enable language implementa-
tions to reach the same order of magnitude of performance
as Java. A major difference between meta-tracing and par-
tial evaluation is the amount of optimization a language im-
plementer needs to apply to reach the same level of perfor-
mance. Our experiments with SOM, a dynamic class-based
language, indicates that meta-tracing performs well even
without adding optimizations. With the additional optimiza-
tions it is on average only 3x (min. 1.5x, max. 11.5x) slower
than Java. SOMyt reaches this results with 5414 LOC. For
partial evaluation on the other hand, we find that many of
the optimization are essential to reach good performance.
With all optimizations, SOMpg, is on average only 2.3x (min.
3.9%, max. 4.9x) slower than Java. SOMpg reaches this re-
sult with 11037 LOC. Thus, we conclude overall from this
study that meta-tracing and partial evaluation can reach the
same level of performance. However, meta-tracing has sig-
nificant benefits from the engineering perspective, because
the optimizations provide generally fewer performance ben-
efits and thus are less critical to be applied.



Since this study uses with Truffle and RPython two inde-
pendent systems, we consider the observed difference in ab-
solute performance as insignificant. We find that tracing and
partial evaluation are equally suited for meta-compilation.
The observed performance differences are merely an artifact
of the different amounts of engineering that went into Truffle
and RPython. Future work could verify this by studying both
techniques on top of the same optimization infrastructure to
determine whether for instance the preservation of control
flow in compilation units is beneficial.

The interpreted performance of self-optimizing inter-
preters could still benefit from significant improvements.
Possible research directions include approaches similar to
superinstructions [Casey et al. 2007] on the AST level to
avoid costly polymorphic method invocations. Another di-
rection could be to attempt the generation of bytecode in-
terpreters potentially in highly efficient machine code to
reach interpretive performance competitive with for instance
Java’s bytecode interpreter.
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