
The Java Data Objects Persistence Model

Stefan Marr
Seminar System Modeling 2005

Hasso-Plattner-Institute for Software Systems Engineering
stefan.marr@hpi.uni-potsdam.de

Abstract
JDO is a specification for design object domain models
without having to consider the persistency of data. The
main target of JDO is the abstraction of concrete data
storage solutions and the provision of transparent and
implementation-independent solutions for persistent
data.

Starting with an introduction to the architectural
model of Java Data Objects, benefits of this approach
and the realization by a tool-based enhancement are
outlined. Furthermore, the API itself is in focus of
examination, main programming interfaces and the
JDO-QL will be discussed.

Finally, it is aimed to give an outlook on the up-
coming JDO 2.0 specification.

Keywords: Java, Persistence, JDO, Database,
Code Enhancement

1. Introduction
Persistence of data is one of the main require-
ments of business application software. Relational
databases are the most commonly used systems to
meet these requirements. They are wide spread
and highly optimized for performance and reli-
ability. However, the use of RDBMS requires
mapping of business object models to a specific
database schema and introduces complexity and
dependencies into the development process and
the resulting product. This leads to a reduced
exchangeability of the used data storage which
delimitates the reusability and spectrum of appli-
cations.

So, an effort should be the introduction of a
standardized abstraction layer. This entails inde-
pendence of a specific data storage type, disposes
the necessity of mapping your object model on a
data schema, and reduces the modeling and pro-
gramming complexity for persistence itself.

2. JDO

2.1. What is JDO?
The Java Data Objects (JDO) API is a standard
interface-based definition of object persistence. It
describes the transparent storage and retrieval of
Java objects.

JDO is intended to provide transparent
mechanisms to persist the whole object domain
model of an application, including mapping of
JDO instances to data
storage and implicit
updates of persistent
object states.

It is intended to
reduce most efforts of
introducing a persis-
tence layer by the use
of automated en-
hancements.

Figure 1 is a sim-
plified example of a
typical application
using JDO as persis-
tence service. The
[JDOSPEC] requires
all JDO implementa-
tions to be binary
compatible. Thereby,
it is possible to ex-
change a specific JDO implementation and start to
use another type of datastore without the need to
recompile the whole application.

Figure 1 Structure of a
JDO-based application

A JDO implementation, delivered by a third-
party vendor is highly optimized on a particular
data storage system like common RDBMS,
ODBMS, or maybe XML-based file storage de-
pending on the area of application. The intro-
duced abstraction layer results in an application

which is independent of a single data storage type
and could be used with a variety of different
kinds of these systems.

2.2. Advantages of using JDO
In Figure 2 a FMC based block diagram is in-
tended to visualize the different modeling efforts.
Figure 2.1 illustrates an application, which uses a
relational database system for persistence and
services implementing class specific persistence
methods. Figure 2.2 displays an application using
JDO for data persistence.

The system on the left hand side consists of a
generic persistency manager which implements
the main functionality and a number of class spe-
cific persistence managers which realize the data
storage and retrieval for the class specific attrib-
utes based on a mapping between attributes and
rows in a database schema. For each class in the
object domain model a specific persistence man-
ager is necessary. In addition, a transaction service
has to be implemented which might be provided
by a used persistence framework, but in general it
is a service tailored to a specific generic persistence
manager.

Figure 2.2 displays the Java Data Objects way.
Most functionality is realized by the JDO imple-
mentation. The transaction service is part of the
specification and class persistence is implemented
by transparent techniques. There is no program-
ming or modeling effort to get these functional-
ities. The operations like creating, finding,
modifying, or storing persistent objects are cov-
ered by the JDO API. Initial operations like make

an object persistent or delete it from the data store
are realized by the JDO PersistenceManager inter-
face. A small introduction to the main interfaces is
given in a later section of this paper.

Figure 3.1 Persistence without and with JDO Figure 3.2 Persistence with JDO

This architecture results in a storage-type in-
dependent object model and provides access to
persistent data objects without knowledge of
internal mapping or data store specific query
languages.

2.3. Environments for JDO
JDO is intended to be used in two types of envi-
ronments, non-managed and managed environ-
ments.

In a non-managed environment the applica-
tion is directly connect to resources it needs and it
is responsible for invocation of persistence actions
on objects or configuration of connections to re-
sources. In such environments the programmer
and application are independent of e.g. J2EE con-
tainer technologies but have to handle all interac-
tions with the underlying persistence service.

In contrast to this, managed environments like
J2EE-based multi-tier applications provide, in
conjunction with the used container, special
mechanisms for declarative configuration of the
persistence service in use.

Depending on the used container, the con-
tainer itself takes responsibility for configuring
the service, managing transactions, providing
security services, or pooling of PersistenceMan-
agers.

The JDO transactions are harmonized with
J2EE transactions. It is up to the programmer to

decide, which type of transaction will be used.
JDO implementations can synchronize there
transaction to distributed J2EE transactions. Stan-
dards like EJB, JSP, Servlets, CMT, and BMT are
supported and JDO is designed to be used in such
environments.

2.4. The Class Enhancement
The benefits in modeling and programming are
achieved by an automated enhancement process.
The JDO specification requires every JDO imple-
mentation to provide an enhancer tool, which is
binary compatible to the standard. This enhancer
tool will work on Java Bytecode files, the class
files.

The structure and an example are shown in
Figure 3. The developer will design a class accord-
ing to domain requirements like an order for
multiple items with a given date. This order
should be persisted in a database with all associ-
ated items. Therefore, no changes have to be
made on the domain model, neither by changes
on attribute visibility nor by adding special per-

All necessary changes for realizing persistence
wi

he JDO Metadata the developer
can

tence
wi

he JDO Metadata the developer
can

ll be added by the enhancer and do not influ-
ence the Java object model. The developer has to
create an XML-file which names and describes the
classes to be persisted. Depending on the used
JDO implementation, there are several vendor-
specific extensions to the XML-file possible. In
some cases it is necessary to build a new applica-
tion upon an existing database structure and the
developer will have to map his class attributes on
a database schema. Furthermore, the specification
provides additional settings for persistent fields.
It is possible to control the persistence behavior in
more detail. Especially for collections and arrays
handling and type of included objects has to be
specified. In addition, the object identity type can
be specified. For all unspecified details default
settings are used.

After creating t

ll be added by the enhancer and do not influ-
ence the Java object model. The developer has to
create an XML-file which names and describes the
classes to be persisted. Depending on the used
JDO implementation, there are several vendor-
specific extensions to the XML-file possible. In
some cases it is necessary to build a new applica-
tion upon an existing database structure and the
developer will have to map his class attributes on
a database schema. Furthermore, the specification
provides additional settings for persistent fields.
It is possible to control the persistence behavior in
more detail. Especially for collections and arrays
handling and type of included objects has to be
specified. In addition, the object identity type can
be specified. For all unspecified details default
settings are used.

After creating t
 initiate the enhancement process. According

to the named classes, the JDO Enhancer will mod-
ify the Java Bytecode. It will implement the Persis-
tenceCapable interface and add several methods
and fields to the classes. On the right side of

 initiate the enhancement process. According
to the named classes, the JDO Enhancer will mod-
ify the Java Bytecode. It will implement the Persis-
tenceCapable interface and add several methods
and fields to the classes. On the right side of

sistence methods and attributes.

Figure 4 Enhancement and its effects

Figure 3 a couple of effects on data classes are
outlined.

For each persistent attribute a set of getter and
set

lement the Persis-
ten

etadata will
be

3. Using JDO
ive a short introduction into

ter methods will be added and executable
code, which accesses the attribute, will be
changed to call the accessor or mutator methods.
With these changes, the added StateManager is
able to guarantee data persistence for all modifi-
cations on a single data object.

Even if it is possible to imp
ceCapable interface manually it is strongly rec-

ommended not to do so. No methods and
attributes with the prefix jdo should be used di-
rectly in unenhanced code. Most tasks can be
done by using the JDOHelper class instead of
calling these methods and attributes.

It is important to know that JDO M
used by the enhancer tool to identify classes to

be made persistence capable, and some informa-
tion like mapping rules or other vendor-specific
enhancements are used at runtime. Therefore,
behavior is not specified if the metadata is
changed after initiating the enhancement process.

This part aims to g
the main classes and interfaces a JDO program-
mer has to concern with. Furthermore, the used
concepts for object identity, object lifecycle, and
the JDO-Query Language are outlined. The rela-
tionships between main interfaces are illustrated
in Figure 4.

Figure 5 Main JDO Interfaces

3.1. The Persistence Manager
evelopers is

e environment, there are sev-
era

stenceManagerFactory object is used to
get

it is possible to obtain a
fac

nager object the
fol

 be used to explicitly make

d

d to invoke
ated

s, the

itted.
•

te persistent instances from

nt

ed

nceCallbacks

 The main interface for application d
the PersistenceManager interface. It is intended to
be used for all persistence operations on Persis-

tenceCapable1 objects and provides overloaded
variants of most cache management and instance
lifecycle methods. These methods manipulate
single instances, collections, arrays of instances, or
potentially all applicable instances in the cache.
Besides, it is used to obtain Query, Extent, and
Transaction objects.

Depending on th
l ways to retrieve such a manager object. In

non-managed environments the concrete class
JDOHelper makes the PersistenceManagerFactory
available.

A Persi
 an instance of PersistenceManager. Thereby, it

is possible to get more than one PersistenceMan-
ager object from a single factory. The factory can
even implement pooling.

In J2EE environments,
tory from properly configured JNDI (Java

Naming and Directory Interface).
After obtaining a PersistenceMa
lowing methods can be used by an application:

• makePersistent(…)
These methods can
transient objects persistent so they will be
stored in the datastore after the transaction
completes successfully. They can only be use
within a transaction, otherwise a
JDOUserException is thrown.
In fact, applications rarely nee
makePersistent() directly. Usually, newly cre
objects are referenced by existing persistent
objects, e.g. via a singleton reference or
membership of a collection. In such case
new object will be transparently made
persistent when the transaction is comm
deletePersistent(…)
These methods dele
the database and must be called in the context
of an active transaction. The Java object thus
remains, but no longer represents the persiste
data store entity, which has been deleted.
Unlike making objects persistent, deleting
objects only deletes the specified instances.
There is no reach-ability algorithm; referenc
persistent objects are not deleted.
To emulate this behavior, the Insta
can be used to implement the jdoPreDelete()
method to delete referred objects.

1 In 2.4 the enhancement process is outlined which adds the
PersistenceCapable interface to all class meant to be made per-
sistent.

•
ance transient again. This

nges to

• evictAll()
cached persistence-

 the
ould be

•
ods re-retrieve the values of the

n.

Fu ich

3.2. Transactions
up of modifications on per-

e managers allow different levels
of i

, state

ager, only a single transac-
tio

i-
tio

rts two transaction strategies. Pes-
sim

fore, pessimistic transactions are the de-
fau

g-living transactions, it
is o

ansaction is used to get
the

l modifications on the persistent
ob

can be obtained from the
Per

3.3. Object Identities
nt kinds of identity for

pe of object identity is called
Da

 is the second and most

makeTransient(…)
Make a persistent inst
does not affect the underlying data store entity
in any way. It does not delete the data. The
instance will be disassociated from the
datastore only, and any subsequent cha
the instance will not be synchronized with the
datastore.
evict(…) or
Evict the given or all
capable instances from the cache.
However, eviction is only a hint to
persistence manager that an instance sh
removed from its cache. By default persisted
objects are automatically evicted, and it is not
necessary for an application to do it
programmatically.
refresh(…)
These meth
fields from the datastore for the specified
instances, whether or not they have been
already modified in the current transactio

rthermore, there are additional methods wh
will be discussed in more detail e.g. in
[JDOAW2003] and [JDOPH2003].

A transaction is a gro
sistent objects; these modifications must be com-
pleted in its entirety or not at all. The demands for
ACID (Atomic, Consistent, Isolated, Durable)
have to be met.

Most resourc
solation. Nevertheless, developers should not

rely on any isolation level greater than Read
Committed, because JDO does not explicitly spec-
ify the isolation level that will be applied.
On isolation level of Read Committed
changes of persisted objects within a transaction
cannot be seen by other transactions until a com-
mit has been issued.

Per PersistenceMan
n is possible at a time. Furthermore, JDO does

not support the concept of nested transactions.
To work with concurrent transactions add

nal PersistenceManager instances are required,
which may be provided by pooling via Persis-
tenceManagerFactory or via methods in a J2EE
environment.

JDO suppo
istic transactions are a required feature,

whereas optimistic transactions are an optional

feature.
There
lt. They are suitable for short-living transac-

tions. Typically, there is no user interaction or
other blocking operations between start and end
of a transaction. This type of transaction will ex-
clude other transactions from accessing data,
which is accessed within.

When working with lon
ften unacceptable to deny access on data used

within this transaction, the complete period of
time the transaction lasts. To reduce such data
locking, optimistic transaction will not lock the
accessed data. They may be implemented with
native optimistic transactions of the underlying
datastore or they are implemented using two
pessimistic transactions.

The first pessimistic tr
 current state of used data objects from the

data storage. This state will be saved for later data
integrity checks.

After doing al
jects over a longer period of time, the second

pessimistic transaction is started. This one will
retrieve the actual state from the datastore and
compare it with the saved data. If the data integ-
rity is ensured, all operations done on the data
objects will be committed. If a concurrent opera-
tion has changed the data in the datastore, the
whole optimistic transaction will fail and an ex-
ception will be thrown.

A transaction object
sistenceManager by invocation of currentTrans-

action(). With begin() and commit() a demarcation
of actions belonging to a transaction is done. roll-
back() is used to discard modifications on persis-
tent objects in an erroneous transaction.

JDO provides three differe
persisted objects. This is done to improve the
transparency and the mechanisms provided by
Java for identity (==) and equality (equals()) re-
main unaffected.

The default ty
tastore Identity. A unique Identity is assigned

to an object when it is made persistent. The nature
of this Object-ID is handled internal by the JDO
implementation and the underlying data store.
Theoretically datastore identity corresponds to
primary-keys in RDBS.

Application Identity

com

tity, it is necessary to im-
ple

jec

3.4. Object Lifecycle
of states for persistent

plex type of object identity. It is used, if the
object identity is derived from a subset of persis-
tent fields of an object or created outside of the
application, like ISBN.

For this type of iden
ment a specific Object-ID class, which fulfils

special requirements. The Object-ID class has to
implement the java.io.Serializable interface and the
toString(), equals(), and hashCode() methods have
to be overridden. All requirements are listed in
section 5.4.1 of the [JDOSPEC].

The third, non-durable identity is used for ob-
ts without need for own identity, like simple

lists or bulk data.

JDO defines a number
objects. These states are used by the JDO runtime
to manage the in-memory lifecycle of persistent
objects and to decide when data has to be syn-
chronized with data store. Not all states are re-
quired by the specification. For instance Persistent-
Nontransactional, Transient-Clean, and Transient-
Dirty are optional states and are only required if a
specific JDO implementation provides associated
optional features.

In this section, only required states and state
transitions are treated, which are also shown in
Figure 5.

3.4.1. Transient
JDO does not influence standard object construc-
tion mechanisms in conjunction with the new
operator. Therefore, all objects created with a
developer-written constructor are transient by
default. They behave like instances of the un-
enhanced class. Until they are made persistent,
there is no identity associated with these objects.
Moreover, there is no handling of persistent fields
and no transactional behavior.

If a transient object of an enhanced class is re-
ferred by a persistent object at commit time, it will
be persisted.

3.4.2. Persistent-New
Instances are in this state if they have been made
persistent during the current transaction. During
the transition from transient to persistent, the
associated PersistenceManager becomes responsi-
ble for handling further state transitions, handling
of field values for rollbacks, and synchronization
with data store. Furthermore, it will assign a JDO
identity to the instance.

Figure 6 Object Lifecycle

3.4.3. Persistent-New-Deleted
This state will be reached if an object has made
persistent and be deleted within one single trans-
action.

3.4.4. Hollow
Objects in the Hollow state are already persisted,
but at this state only their object identity is
loaded. All ordinary attribute values have not
been loaded.

3.4.5. Persistent-Clean
The data of these objects had been read, but not
modified within the current transaction.

3.4.6. Persistent-Dirty
The data of objects in this state had been changed
in the current transaction, or the makeDirty()
method of JDOHelper had been invoked.

A call to makeDirty() is useful, when changes to
a persistent field of an array type had been made,
since JDO does not require automatic tracking of
changes made to array fields.

3.4.7. Persistent-Deleted
JDO instances that have been deleted in the cur-
rent transaction are Persistent-Deleted.

3.5. Extents
An Extent represents the complete set of all per-
sistent instances of a class. It is obtained from a
PersistenceManager by getExtent and it is possible
to decide whether items of subclasses should be
included or excluded.

The primary purpose of an extent is to provide
a candidate collection of objects to be used in a
query, where filtering or ordering can be applied.

Nevertheless, it can be used to access all per-
sisted objects of a given class and maybe its sub-
classes, therefore an Iterator is provided by the
Extent interface.

The data-retrieval process will not start until
the first invocation of next() on a obtained Iterator.
Thus, it is possible to delegate an Extent to a
Query without unnecessary data access.

3.6. JDO-Query Language
The aim of the JDO-Query Language is to provide
a simple query grammar that is familiar to Java
programmers and that can be executed by the

JDO implementation, possibly by converting it to
a different representation and passing it to the
underlying data store. Hence, it abstracts from
data store languages like SQL or other datastore
depending premises.

JDO enables vendor-specific enhancements
and additional query languages. In some imple-
mentations it is possible to use SQL query state-
ments concurrent to native JDO-QL queries.

A query itself consists of a set of candidate in-
stances, which can be specified using a Java class,
an Extent, or a collection and a filter string. In
addition it is also possible to declare import state-
ments, parameters and variables as well as an
ordering for the set of results. When executed, a
query takes the set of candidate instances and
returns a Java collection of references to the in-
stances that satisfies the query filter.

Queries will be highly optimized on the un-
derlying datastore, depending on the JDO imple-
mentation. For instance, Extents can internally be
used to produce an equivalent query in native
data store language.

Filter strings of JDO-QL can consist of attribute
names, logical operators, references on objects
and a few methods related to strings or objects.

For instance, a filter string can be ‘attrName
== \"string\"’. A few common supported logical
operators are !, &&, ||, <, >, ==, etc. Indeed, for
string comparison no SQL like like-operator is
supported. JDO provides startsWith() and
endsWith() constraints. To assists work with col-
lections of objects, isEmpty() and contains(Object o)
are specified.

In comparison with SQL or other common
query languages JDO-QL is limited to the very
basics in version 1.0.1, but will be enhanced in the
upcoming JDO 2.0 standard.

4. Outlook on JDO 2.0
The upcoming revision of JDO, so called JDO 2.0,
is finally approved. It will provide several im-
provements to the first version of Java Data Ob-
jects.

In particular, JDO 2.0 implementations will be
binary compatible to all earlier versions and
among each other. Nevertheless, it will introduce
new interesting additional features.

One of the main targets had been to specify a
standard object/relational mapping to improve
JDO’s acceptance among the general program-
ming public. Standardized mapping and runtime

behavior will improve portability between differ-
ent JDO implementations and will increase utility
of vendor independent tools.2

Furthermore, JDO 2.0 will introduce an at-
tach/detach API, which will simplify handling
objects in multi-tier applications. For instance, an
application has to transfer an object to a client and
allow the client to modify its states. Afterwards,
the object has to be returned and the modifica-
tions done have to be saved.

Maybe, the most important improvements had
been done on the JDO-Query Language. Its capa-
bilities had been enhanced a lot, compared to JDO
1.0. The JDO-QL will now support aggregates,
named queries, projections and additional func-
tions for string-related and mathematic opera-
tions.

In JDO 1.0 all query results had been a collec-
tion of objects identified by the query. Since addi-
tion of projections and aggregates in JDO 2.0 a
result can be an array of objects, which represents
a table of records with named columns.

The newly supported aggregate functions are
count(), sum(), avg(), min(), and max(). The follow-
ing functions had been introduced to enhance
string and math capabilities:

• get(Object) applies to Map types
• containsKey(Object) applies to Map types
• containsValue(Object) applies to Map types
• toLowerCase() applies to String type
• toUpperCase() applies to String type
• indexOf(String) applies to String type
• matches(String) applies to String type, but only

the following regular expression patterns are
required to be supported: Global “(?i)” for case-
insensitive matches; and “.” and “.*” for wild
card matches.

• substring(int, int) applies to String type
• Math.abs(numeric)
• Math.sqrt(numeric)
• JDOHelper.getObjectId(Object) static method in

JDOHelper, allows using the object identity of
an instance directly in a query.

5. Conclusion
Persistence is one of the most important concepts
in business applications. Therefore, an easy to use

2 E.g. Versant offers an Eclipse plug-in for JDO based devel-
opment as open source software
http://www.versant.com/opensource/orm/en-us

and common interface is required to meet busi-
ness requirements.

JDO will meet these requirements in most
cases. It is a standardized interface-based defini-
tion of object persistence, which is supported by
leading vendors.

Provided transparency will help to reduce
modeling and programming efforts, compared to
ordinary JDBC and SQL usage, which neverthe-
less is not obsolete in specific use cases. Further-
more, the abstraction of specific data storage will
lead to an improved portability of the whole ap-
plication.

The programmer itself will benefit in an API
for accessing persistent data with object model
information only and tools which provide this
transparency by automated code enhancement.

While JDO 1.0 may not suit anyone, JDO 2.0
will bring a lot of promising improvements and
may be considered when choosing a persistence
framework.

References

[JDOSPEC] Java Data Objects Specification
http://jcp.org/aboutJava/communityprocess/final
/jsr012/index2.html

[JDO20DRAFT] Java Data Objects 2.0 Public Draft
http://jcp.org/aboutJava/communityprocess/pr/j
sr243/index2.html

[FMC] Fundamental Modeling Concepts
http://www.f-m-c.org/notation-reference/

[JDOC] JDO Java Doc
http://java.sun.com/products/jdo/javadocs/

[UUJDO2003] David Ezzio,
Using and Understanding Java Data Objects,
Apress, 2003

[JDOPH2003] Sameer Tyagi et al.
Core Java Data Objects, Prentice Hall PTR, 2003

[JDOAW2003] Robin M. Roos,
Java Data Objects, Addison Wesley, 2003

[JDOO2003] David Jordan and Craig Russell,
Java Data Objects, O’Reilly, 2003

[HOLU2004] Andreas Holubek,
Java Data Objects in der Praxis,
Javamagazin 06/2004

http://jcp.org/aboutJava/communityprocess/final/jsr012/index2.html
http://jcp.org/aboutJava/communityprocess/final/jsr012/index2.html
http://jcp.org/aboutJava/communityprocess/pr/jsr243/index2.html
http://jcp.org/aboutJava/communityprocess/pr/jsr243/index2.html
http://www.f-m-c.org/notation-reference/
http://java.sun.com/products/jdo/javadocs/
http://www.versant.com/opensource/orm/en-us

	1. Introduction
	2. JDO
	2.1. What is JDO?
	2.2. Advantages of using JDO
	2.3. Environments for JDO
	2.4. The Class Enhancement
	3. Using JDO
	3.1. The Persistence Manager
	3.2. Transactions
	3.3. Object Identities
	3.4. Object Lifecycle
	3.4.1. Transient
	3.4.2. Persistent-New
	3.4.3. Persistent-New-Deleted
	3.4.4. Hollow
	3.4.5. Persistent-Clean
	3.4.6. Persistent-Dirty
	3.4.7. Persistent-Deleted

	3.5. Extents
	3.6. JDO-Query Language

	4. Outlook on JDO 2.0
	5. Conclusion

