
Optimizing the Order of Bytecode Handlers in Interpreters using
a Genetic Algorithm

Wanhong Huang
The University of Tokyo

Japan
huang-wanhong@g.ecc.u-

tokyo.ac.jp

Stefan Marr
University of Kent
United Kingdom
s.marr@kent.ac.uk

Tomoharu Ugawa
The University of Tokyo

Japan
tugawa@acm.org

ABSTRACT
Interpreter performance remains important today. Interpreters are
needed in resource constrained systems, and even in systems with
just-in-time compilers, they are crucial during warm up. A common
form of interpreters is a bytecode interpreter, where the interpreter
executes bytecode instructions one by one. Each bytecode is exe-
cuted by the corresponding bytecode handler.

In this paper, we show that the order of the bytecode handlers
in the interpreter source code affects the execution performance of
programs on the interpreter. On the basis of this observation, we
propose a genetic algorithm (GA) approach to find an approximately
optimal order. In our GA approach, we find an order optimized for
a specific benchmark program and a specific CPU.

We evaluated the effectiveness of our approach on various mod-
els of CPUs including x86 processors and an ARM processor. The
order found using GA improved the execution speed of the pro-
gram for which the order was optimized between 0.8% and 23.0%
with 7.7% on average. We also assess the cross-benchmark and
cross-machine performance of the GA-found order. Some orders
showed good generalizability across benchmarks, speeding up all
benchmark programs. However, the solutions do not generalize
across different machines, indicating that they are highly specific
to a microarchitecture.

CCS CONCEPTS
• Computing methodologies → Genetic algorithms; • Soft-
ware and its engineering→ Interpreters.

KEYWORDS
Interpreters, Genetic Algorithm, Code Layout, JavaScript, Embed-
ded Systems

ACM Reference Format:
Wanhong Huang, Stefan Marr, and Tomoharu Ugawa. 2023. Optimizing the
Order of Bytecode Handlers in Interpreters using a Genetic Algorithm. In
The 38th ACM/SIGAPP Symposium on Applied Computing (SAC ’23), March
27-March 31, 2023, Tallinn, Estonia. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3555776.3577712

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia
© 2023 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in The 38th ACM/SIGAPP
Symposium on Applied Computing (SAC ’23), March 27-March 31, 2023, Tallinn, Estonia,
https://doi.org/10.1145/3555776.3577712.

1 INTRODUCTION
Interpreters play an important role in programming language imple-
mentations. While performance-oriented virtual machines (VMs)
use just-in-time (JIT) compilers, interpreters remain prevalent be-
cause (1) interpreters are easier to implement, (2) they work well
in resource-constrained environments, (3) JIT compiling all code
in large applications may cause the compilation cost to be higher
than the run-time saving for rarely executed code, and finally, (4)
interpreters commonly have less startup cost.

A common form of interpreters executes programs by first com-
piling them into an assembly-like intermediate language called byte-
code. Bytecode interpreters have an instruction dispatcher, which
decodes the bytecodes, selects the bytecode handler to execute the
bytecode, and jumps to the handler.

Thread code [2] is a popular optimization for these bytecode
interpreters. Without the threaded-code optimization, whenever
a bytecode handler completes its execution, it jumps to the single
dispatcher, which typically resides at the head of the outer loop. In
a threaded-code interpreter, in contrast, each bytecode handler has
a dispatcher and jumps directly to the next bytecode.

In this paper, we improve the performance of threaded-code in-
terpreters by rearranging the order of the bytecode handlers in the
interpreter program. As previous studies suggested [4, 15, 16, 18, 19],
rearrangement of basic blocks can change performance, because
processor microarchitectures improve the execution speed using
the location of code, e.g., caches and branch predictors. We ob-
served that the order of the bytecode handlers significantly impacts
the execution time (see Section 2.4) using a JavaScript interpreter,
eJSVM [10] (see Section 2.1).

Finding the optimal order of handlers is challenging. A simple
heuristics-based solution construction approach from intuition may
result in a suboptimal solution because many microarchitectural
factors may affect performance. Assuming that locality of executed
program code dominates the performance factors, arranging han-
dlers in the order of execution frequency may improve performance.
However, these heuristics do not always give optimal performance
as we see in Section 2.4. In addition, the factors and the weight of
the factors differ from onemicroarchitecture to another. This means,
for best performance, one may need to use different interpreter
binaries, each optimized for a particular microarchitecture.

We used a genetic algorithm (GA) to find an approximately opti-
mal handler order. In our GA approach, a solution determines the
order of handlers. The quality of a solution is measured by the aver-
age execution time of a benchmark program using the interpreter
in which handlers are arranged in the order determined by the solu-
tion. Execution times are measured on the target microarchitecture.

1

https://doi.org/10.1145/3555776.3577712
https://doi.org/10.1145/3555776.3577712


SAC ’23, March 27-March 31, 2023, Tallinn, Estonia Wanhong Huang, Stefan Marr, and Tomoharu Ugawa

Thus, the optimal solution reflects the characteristics of the target
microarchitecture.

Since we use a specific program on a specific microarchitecture
to select the optimal solution, the solution may be specific not only
to the microarchitecture but also the program. In other words, a
solution produced by the GA, which we call GA solution, may be
optimized for the target program and the target microarchitecture.
For the embedded systems that we target, this is practical because
we can know the program installed in the system together with
the interpreter. Some systems take this approach even further and
specialize the interpreter for a specific program [7, 10]. However
outside of embedded systems, generalizable solutions are desirable;
one would ideally want a single solution to benefit all programs.

We evaluated GA solutions on three Intel x86 processors and one
ARM processor, and we confirmed that the GA solutions improved
the performance for the target benchmark programs. The speedups
were between 0.8% and 23.0% with 7.7% speedup on average. We
also evaluated the generalizability of GA solutions and found that a
GA solution optimized for a benchmark program is likely to speed
up executions of other benchmarks on the same target microar-
chitecture. We observed 4.6% speedup on average when we used
solutions optimized for different benchmarks on x86 processors.

2 BACKGROUND
2.1 eJS
The eJSVM is a JavaScript VM designed for embedded devices and
uses a register-based bytecode interpreter. The interpreter optimizes
bytecode dispatch using threaded code. The eJS compiler compiles
JavaScript programs to bytecode before execution. The bytecode set
consists of 58 bytecodes that include constant loading, arithmetic,
control, object, and closure related bytecodes.

The eJSVM optimizes the bytecode using constant propagation,
copy propagation, a limited form of common subexpression elim-
ination, and dead code elimination. It also implements a register
allocator to reduce the number of required software registers. All
optimizations together decrease the bytecode size of programs by
26.8% percent on average.

A unique feature of the eJSVM is that the VM construction frame-
work [10] generates an optimized eJSVM for a particular JavaScript
program based on profiling information obtained from the pro-
gram’s execution. In embedded systems, developers typically de-
ploy the JavaScript program together with the VM. Therefore, the
VM can be optimized for the specific JavaScript program. Using
profiling information, eJSVM can be specialized to only support
the needed datatypes in a bytecode handler and thus generate a
simplified and more optimal bytecode handler [8, 10]. It can also
construct superinstructions from frequently used pairs of constant
loading bytecode instructions and arithmetic bytecode instructions.

However, to reduce the number of possible bytecode handler
orders and enable cross-benchmark comparisons, we disabled su-
perinstructions and handler specializations in this paper. Thus, we
allowed all datatypes and did not construct superinstructions.

2.2 Threaded-code Interpreter
A simple way to implement a bytecode interpreter is to use a big
switch-case statement surrounded by a loop, called the interpreter

interpreter(VM_Context *ctx) {
pc = 0;
while (true) {
switch (ctx->bytecode[pc++] ) {
case BYTECODE1:
handler for bytecode1
break;

case BYTECODE2:
handler for bytecode2
break;

...
case BYTECODE𝑛:

handler for bytecode𝑛
break;

}
}

}

Figure 1: Interpreter without threaded-code optimization.

#define NEXT_INSN goto *ctx->bytecode_handler[pc++]
interpreter(VM_Context *ctx) {

pc = 0;
NEXT_INSN;

case BYTECODE1:
handler for bytecode1
NEXT_INSN;

case BYTECODE2:
handler for bytecode2
NEXT_INSN;

...
case BYTECODE𝑛:

handler for bytecode𝑛
NEXT_INSN;

}

Figure 2: Thread-code interpreter.

loop. The pseudocode of this kind of interpreter is shown in Figure 1.
At the head of the interpreter loop, it fetches the next bytecode
and decodes it. Then, the switch-case statement dispatches to the
handler corresponding to the bytecode. When an execution of any
bytecode handler completes, the handler jumps back to the head of
the interpreter loop to handle the next bytecode.

In an interpreter with the direct threaded code optimization, the
bytecode handlers do not jump back to the head of the interpreter
loop. Instead, each bytecode handler dispatches to the handler for
the next bytecode at the end. The pseudocode of a direct threaded
interpreter is shown in Figure 2. The bytecode numbers in the
bytecode program of a function are converted to the addresses of
the corresponding handlers in advance. At the end of each handler,
it fetches the address of the next bytecode and jumps to the address
in NEXT_INSN.

By eliminating jumps to the head of the interpreter loop, threaded
code avoids one jump per bytecode and reduces branch prediction
misses on common microarchitectures [3]. This is because bytecode
sequences typically show repeated patterns, and programs rarely
exhibit all possible bytecode sequences. Thus, the branch predictor
can learn the possible branch targets, i.e., the most likely successor
bytecode for each bytecode handler separately based on the jump
machine instruction at the end of each handler.

2.3 Opportunity of Handler Reordering
Optimization

If a bytecode 𝑋 is very likely to be executed consecutively after
a bytecode 𝑌 , arranging the bytecode handler of 𝑌 immediately

2



Optimizing the Order of Bytecode Handlers in Interpreters using a Genetic Algorithm SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

after that of 𝑋 will improve performance. In this arrangement,
the execution of machine code for the sequence of bytecodes 𝑋;𝑌
falls though from the handler of 𝑋 to that of 𝑌 , which may make
the combination fit better into the instruction cache and help the
prefetcher or other facilities of the microarchitecture.

In addition to code locality, reordering of bytecode handlers
may affect performance in other ways. Reduction of the branch
prediction misses we mention above is but one example. Many
other factors may affect performance, e.g., as discussed in the work
on Stabilizer [6] and CodeShaker [21].

In its standard configuration, eJSVM arranges the bytecode han-
dlers in the order of bytecode numbers. Numbers are assigned so
that the bytecodes in the same category have closer numbers. For
example, arithmetic bytecodes have consecutive numbers. There-
fore, the order of eJSVM’s bytecode handlers may not be optimal
in terms of performance. Hence, we expect that reordering the
bytecode handlers improves performance.

2.4 Preliminary Evaluation
To verify our assumption that reordering the handler can change
the execution speed of the program, we compared two VMswith dif-
ferent orders of handlers. One is the bytecode-number order, which
is the order of the original eJSVM. The other is the frequency order
of each program in which the handlers are ordered from the most
to the least frequently executed. The frequencies are measured by
profiling the execution of each program in advance. The frequency
order is based on the assumption that better code locality improves
performance. This experiment is conducted on three x86 processors
and an ARM processor (see Section 4.1).

Figure 3 shows the speedups for the frequency order over the
bytecode-number order for each benchmark on the Y-axis; the
higher, the better. For Bounce and Permute, we observed -14.5%
and -12.8% of speedups, i.e., slowdown, for x86A, but consistently
better results on RPi’s ARM processor.

As shown in the figure, the order of the bytecode handlers af-
fected the execution speed. Simply changing the order resulted
in speedups from +8.5% to -15.6%, depending on the program and
the processor. This result suggests an opportunity of the handler
reordering optimization.

However, the result suggested that not only code locality but
also other factors affected performance. For three out of four types
of hardware, performance was improved on average. Therefore,
we think code locality is one of the sources of performance im-
provements. However, the execution was slowed down for some
cases. This implies that other factors than code locality affected
performance. Furthermore, how the frequency order affected per-
formance differed from processor to processor. This motivated us
to find better orders by using GA.

3 GENETIC ALGORITHM
Our goal is to find the handler order that improves performance
as much as possible, for which we use a genetic algorithm [9]
(GA). GA is useful since we do not know exactly which and by
how much different microarchitectural factors affect performance.
Furthermore, we expect modern microarchitectures to differ widely,
which makes GA, as a metaheuristic search, a good candidate.

The GA takes an initial set of candidates, identifies good ones,
and produces a new set of candidates based on them. A round of
this process is called a generation. Taking the randomly chosen
initial candidates, GA tries to improve over them a little with each
generation.

In the GA framework, each candidate solution is encoded as a
sequence, called chromosome. New chromosomes are created by
crossover and mutation operations. The crossover operation pro-
duces a new chromosome by combining parts of two parent chro-
mosomes. The mutation operation produces a new chromosome
by mutating a single chromosome. After generating many chromo-
somes in a generation, GA selects good chromosomes from them
and uses the selected ones as the parents for the next generation.

The selection operation evaluates each chromosome. We use
the benchmark execution time as a selection criterion, where a
candidate is better if it has a shorter execution time. To measure
the result, we build a new VM for each chromosome and run a
benchmark on the VM.

3.1 Solution Representation
A solution for us is a specific order of the bytecode handlers. We
will evaluate two representations for solutions in Section 4: the path
representation and the adjacency representation. They are common
representations used to encode the traveling salesman problem
(TSP) [13] for GA. We chose these two because, we have the same
constraints as the TSP: a solution must be a permutation of a se-
quence where each element appears exactly once.

The path representation is a straightforward representation. A
chromosome is an array of bytecode numbers. With this chro-
mosome, the bytecode handlers are arranged in the order of the
bytecode numbers in the array.

With the adjacency representation, we can express that an byte-
code 𝑋 is likely to be followed directly by a bytecode 𝑌 . A chro-
mosome in the adjacency representation is an array indexed by
bytecode numbers. An element of the array indicates the bytecode
number of the following bytecode. For a chromosome𝐶 , if𝐶 [𝑖] = 𝑗 ,
then the bytecode handlers are ordered so that the handler for the
bytecode 𝑖 is followed by that for the bytecode 𝑗 .

A valid adjacency representation expresses a cycle comprising all
bytecode handlers. To decide the first handler in the list of handlers,
we added a pseudo bytecode, entry. The bytecode handlers are
arranged in the order of the cycle, starting from the next handler
to the entry.

3.2 Crossover
For the path representation, we used the partially-mapped crossover
operator [13]. It chooses two random indexes and swaps the con-
tents of two parent chromosomes for the indexes between the
randomly chosen indexes. At the same time, it uses the swapped
part as a partial function, 𝑓 , to repair the sequence to make it a
valid representation. The partial function 𝑓 maps an element in a
swapped part of a parent to the other parent’s element at the same
index. For an element 𝑋 in the unswapped part, the same element
may come from the other parent by swapping. In such a case, it
replace 𝑋 with 𝑓 (𝑋 ). If 𝑓 (𝑋 ) also comes by swapping, it replaces

3



SAC ’23, March 27-March 31, 2023, Tallinn, Estonia Wanhong Huang, Stefan Marr, and Tomoharu Ugawa

−10

−5

0

5

10

sp
ee

d
up

(%
)

x86A

−10

−5

0

5

10

sp
ee

d
up

(%
)

x86B

B
ounce

C
D

L
ist

M
andelbrot

N
B

ody

P
erm

ute

Q
ueens

R
ichards

S
ieve

S
torage

T
ow

ers

geo.m
ean

−10

−5

0

5

10

sp
ee

d
up

(%
)

x86C

B
ounce

C
D

L
ist

M
andelbrot

N
B

ody

P
erm

ute

Q
ueens

R
ichards

S
ieve

S
torage

T
ow

ers

geo.m
ean

−10

−5

0

5

10

sp
ee

d
up

(%
)

RPi

Figure 3: Speed up for the frequency order VMs over the bytecode-number order VMs for four processors (see Section 4 for
the details of processors), with 95% confidence interval; the higher, the better. For three out of four machines, speed up was
observed on average. However, the divergence implies that other factors beside code locality affect performance.

𝑓 (𝑋 ) with 𝑓 (𝑓 (𝑋 )). It continues to apply 𝑓 until the result becomes
different from any element in the swapped part.

More precisely, for the parent chromosomes 𝐶1 and 𝐶2 and the
random indices 𝑖 and 𝑗 where 𝑖 < 𝑗 , it defines a partial function 𝑓

such that

𝑓 = {𝐶2 [𝑘] → 𝐶1 [𝑘] |𝑖 ≤ 𝑘 ≤ 𝑗}.

Then, it produces a new chromosome 𝐶′ for the next generation
such that

𝐶′ [𝑘] =
{

𝑓 ∗ (𝐶1 [𝑘]) (𝑘 < 𝑖 or 𝑗 < 𝑘)
𝐶2 [𝑘] (𝑖 ≤ 𝑘 ≤ 𝑗) ,

where 𝑓 ∗ (𝑋 ) is the result of as many applications of 𝑓 to 𝑋 as
necessary for it to be different from any of 𝑆2 [𝑘] with (𝑖 ≤ 𝑘 ≤ 𝑗).

For the adjacency representation, we used the alternating-edge
crossover operator [13]. In the chromosome 𝐶 , a pair of an index 𝑖
and the value at that index𝐶 [𝑖] represents an edge in the adjacency
relationship. Thus, the handler for 𝑖 needs to be directly followed
by the handler for 𝐶 [𝑖]. This operator constructs a path covering
all nodes by alternatingly taking edges from both parents. For
two parent chromosomes, 𝐶1 and 𝐶2, it first randomly chooses a
bytecode number, 𝑖0, and decides the next bytecode 𝑖1 such that
𝑖1 = 𝐶1 [𝑖0] by using the edge of𝐶1. Thus, for the new chromosome
𝐶′, 𝐶′ [𝑖0] = 𝐶1 [𝑖0]. Next, it decides the next bytecode 𝑖2 such that
𝑖2 = 𝐶2 [𝑖1] by using the edge of 𝐶2. Hence, 𝐶′ [𝑖0] = 𝐶1 [𝑖0]. But, if,
in the 𝑗-th step, 𝑖 𝑗+1 is already in the new chromosome, it chooses
𝑖 𝑗+1 randomly.

3.3 Mutation
We used the exchange mutation operator [13]. We randomly chose
an index 𝑖 , and then chose another index 𝑗 . The index 𝑗 was chosen
randomly, but we assigned weights so that the indices closer to 𝑖
are likely to be chosen.

The exchange mutation may not yield a valid chromosome for
the adjacency representation. Therefore, for the adjacency represen-
tation, we converted it to the path representation before applying
the exchange mutation, and converted to the adjacency representa-
tion after the mutation.

3.4 Selection
We will experiment with two standard selection operators in Sec-
tion 4: the elitism selection and a combination of the elitism and
roulette wheel selections, which we simply call the roulette wheel
selection in the rest of this paper. The elitism selection selects the
best 𝑘 chromosomes for the population of the next generation.

The roulette wheel selection, we define a numeric fitness of a
chromosome 𝑖 , 𝑓𝑖 ; the higher, the better. The roulette wheel selection
selects two best chromosomes. Then, it selects (𝑘−2) chromosomes
for the next generation from the remaining chromosomes randomly
with the weights of the fitness. More precisely, the possibility for a
chromosome 𝑖 being selected, 𝑝𝑖 , is denoted as

𝑝𝑖 =
𝑓𝑖∑

𝑗∈C 𝑓𝑗
,

where C is the set of all chromosomes except for the two best ones.
We defined the fitness of a chromosome 𝑖 to reflect the execution

speed of the VM generated by it. More precisely, we used the com-
plement of the min-max normalized execution time. The measured
execution time for the fastest chromosome is 𝑡min and slowest one
is 𝑡max. With this, the fitness for chromosome 𝑖 is defined as

𝑓𝑖 = 1 − 𝑡𝑖 − 𝑡min
𝑡max − 𝑡min

,

where 𝑡𝑖 is the measured execution time for the chromosome 𝑖 .
For the execution time, we averaged the elapsed times for three
executions.

4



Optimizing the Order of Bytecode Handlers in Interpreters using a Genetic Algorithm SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

3.5 Making VMs from Chromosomes
Given a chromosome, we constructed a VM that has bytecode
handlers arranged in source code in the order of the chromosome.
More precisely, we reordered the bytecode handlers in the source
code of eJSVM written in C. In eJSVM, the bytecode handlers are
inlined in the interpreter function as shown in Figure 2; each of
them is not a single function but a labeled code block. For complex
operations, such as slow path of property accesses, the bytecode
handlers call runtime functions.

The handlers of the constructed VMs may not be precisely ar-
ranged in the order of the chromosome because the C compiler’s
optimizer may rearrange basic blocks. If we reordered bytecode
handlers in the generated eJSVM binary, or if we generated byte-
code handlers in assembly language, we could arrange the bytecode
handlers exactly the same order as the solution. However, if we did
so, we would have to give up compiler’s optimizations. Rather, we
chose to generate interpreter’s source code in C language, and opti-
mize the solution to the combination of the compiler and processor.
We will call such a combination an environment.

4 EVALUATION
As a first step of the evaluation, we discuss how we chose the
representation and selection operators for the GA. Then, we assess
how much the GA solutions improve eJSVM’s performance based
on ordering bytecode handlers in the various environments.We also
evaluated the generality of the GA solutions from two perspectives:

• Cross-benchmark evaluation: does a solution optimized for
a particular program improve other programs in the same
environment?

• Cross-machine evaluation: does a solution generated in a
particular environment improve performance in a different
environment?

In our experimentation, we produced five chromosomes for the
initial population and population for each generation. From these
five chromosomes, we randomly chose a pair and produced two
chromosomes by crossover. We repeated this step eight times to pro-
duce 16 chromosomes. Then, we gave 5% of the chance of mutation
10 times for each of the 16 chromosomes; each chromosome could
be mutated up to 10 times, but the chance of being mutated 10 times
was as small as (0.05)10. Finally, we added the five chromosomes
of the current generation to the 16 chromosomes, and selected five
for the next generation from the 21 chromosomes.

4.1 Experimental Environment
For this evaluation, we ran the benchmarks using the processors and
the C/C++ compilers listed in Table 1. The CPU clock frequencies
were fixed to the frequencies denoted in Table 1 by turning off turbo
boost and hyperthreading, and using the performance governor.
For the environment x86A, which had a heterogeneous multicore
processor, we bound the eJSVM process to a “performance” core.
The RPi environment was a Raspberry Pi 3 Model B. The interpreter
binary of eJSVM was around 20.7 KB.

We used benchmarks from the AreWe Fast Yet [14] benchmark
suite. Because our GA measured execution times to evaluate the
fitness for solutions, each benchmark had to be executed thousands

of times. Thus, we modified the benchmark programs to reduce iter-
ations performed in the program executions. We also selected only
benchmark programs that we could modify to complete execution
in a reasonable time in eJSVM; we did not use DeltaBlue, Havlak.
We did not choose JSON, either, because the original eJSVM could
not run it because it used a very long string that was not supported
by eJSVM, which is for embedded systems. As a result, the entire
experiment completes within a day for each x86 environment and
within three days for RPi.

4.2 Choosing the Representation and Selection
Operator for the GA

As outlined in Section 3.1 and 3.4, we consider the path and ad-
jacency representations as well as the elitism and roulette wheel
selection operators. This gives us four possible combinations for
the GA. To choose one, we compare their convergence after 30
generations in the x86A environment.

Figure 4 plots the convergence curves over the 30 generations
in x86A. The Y-axis is the normalized elapsed time for the program
running on the VM with the best one among the chromosomes in
the generation. The numbers are normalized to an initial solution.
After 30 generations, we pick the best one from all the chromosomes
generated by the four combinations within this 30 generations. The
horizontal line indicates the execution time for the best chromo-
some. The bar chart labeled geo. mean indicates the geometric
mean of the execution times for the best chromosome within the
30 generations for each combination.

When comparing path and adjacency representations, the adja-
cency-representation-based combinations were likely to produce
better results regardless of the selection operations. Thus, adjacency
representation with either the elitism selection (shortened to AE) or
roulette wheel selection (AR) outperformed both path representa-
tion variants (PE and PR). Additionally, we conclude from Figure 4
that the quality of the chromosome reaches a relatively stable level
after 30 generations.

For the remaining evaluation, we used AE, the combination of
adjacency representation and elitism selection, to generate 30 gener-
ations. Among the 30 generations, we picked the best chromosome
as the representation of the optimal solution. Thus, the optimal
solution does not necessarily come from the last generation.

4.3 Performance Improvements by GA
To assess the benefit of the optimal solution found by GA, we
produced GA solutions for each benchmark in each environment
and measured the execution times of the optimization targets, i.e.,
the benchmark and the environment for which the solution was
optimized. Figure 5 shows the speedups for the GA solutions over
the original eJSVM, whose bytecode handlers are arranged in the
bytecode-number order. Speedups for Sieve and Mandelbrot in
x86C were 23.0% and 20.1%, respectively.

We observed that GA solutions improved the execution speed for
all benchmarks and for all environments. Although improvements
varied from benchmark to benchmark, average improvements over
benchmarks were more than 5% for all environments, and that was,
in the best case, 12.4% for x86C.

5



SAC ’23, March 27-March 31, 2023, Tallinn, Estonia Wanhong Huang, Stefan Marr, and Tomoharu Ugawa

Table 1: Processors and C/C++ compilers used in our experimentation.

name CPU Model compiler
x86A Intel(R) Core(TM) i9-12900 2.4 GHz gcc 10.3.0
x86B Intel(R) Core(TM) i7-11700 2.5 GHz gcc 9.4.0
x86C Intel(R) Xeon(TM) W-2235 3.8 GHz gcc 9.4.0
RPi Broadcom BCM2837 ARMv8 Cortex-A53 1.2 GHz gcc 10.2.1

0 5 10 15 20 25 30
0.80

0.85

0.90

0.95

1.00

no
rm

al
iz

ed
ex

ec
ut

io
n

ti
m

e

Bounce

PE

PR

AE

AR

0 5 10 15 20 25 30

CD

0 5 10 15 20 25 30

List

0 5 10 15 20 25 30

Mandelbrot

0 5 10 15 20 25 30
0.80

0.85

0.90

0.95

1.00

no
rm

al
iz

ed
ex

ec
ut

io
n

ti
m

e

NBody

0 5 10 15 20 25 30

Permute

0 5 10 15 20 25 30

Queens

0 5 10 15 20 25 30

Richards

0 5 10 15 20 25 30
0.80

0.85

0.90

0.95

1.00

no
rm

al
iz

ed
ex

ec
ut

io
n

ti
m

e

Sieve

0 5 10 15 20 25 30

Storage

0 5 10 15 20 25 30

Towers

PE PR AE AR

0.950 0.951
0.934 0.936

geo. mean

Figure 4: Convergence curve for x86A for four combinations of the solution representations and the selection operators; the
path representation (P), the adjacency representation (A), the elitism selection (E), and the roulette wheel selection (R). The
X-axis represents the generations.

We conclude that the GA approach was effective to optimize VM
to a particular program and a particular environment.

4.4 Cross-Benchmark Evaluation
Next, we assess whether a solution optimized for a specific bench-
mark can also speed up other benchmarks in the same environment.
Outside of embedded scenarios, this is useful since the application
is generally not known upfront.

While different programs behave differently at the macro level,
they may show similarities at the micro level. Thus, for instance,
bytecode sequences may show similar patterns. If this is the case, a
solution optimized for a specific program may generalize to other
programs and also give speedups. To verify this intuition, we use the
solution optimized for a specific benchmark to assess the speedup
it gives for the other benchmarks.

The evaluation results in the three x86 environments are shown
in Figure 6. Each graph shows the speedups over the original eJSVM
by the solution optimized for the program indicated on its title,
with 95% confidence intervals; the higher, the better. The X-axes
represent the programs that are executed. For example, the second
bar in the graph in the upper left corner indicates the speedup for
CD for the solution optimized for Bounce. Both the GA search and
measurements were conducted in the same environment.

The red bars are results for the solutions optimized for the exe-
cuted benchmarks. Thus, they should be the same as for the results
in Figure 5; because we measured again, the numbers were not ex-
actly the same. The bar geo.mean indicates the geometric mean of
all programs, except the one for which the solution was optimized.

A GA solution for one benchmark may not necessarily speed
up other benchmarks in the same environment. However, in most

6



Optimizing the Order of Bytecode Handlers in Interpreters using a Genetic Algorithm SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

0

5

10

15

20

sp
ee

d
up

(%
)

x86A

0

5

10

15

20

sp
ee

d
up

(%
)

x86B

B
ounce

C
D

L
ist

M
andelbrot

N
B

ody

P
erm

ute

Q
ueens

R
ichards

S
ieve

S
torage

T
ow

ers

geo.m
ean

0

5

10

15

20

sp
ee

d
up

(%
)

x86C

B
ounce

C
D

L
ist

M
andelbrot

N
B

ody

P
erm

ute

Q
ueens

R
ichards

S
ieve

S
torage

T
ow

ers

geo.m
ean

0

5

10

15

20

sp
ee

d
up

(%
)

RPi

Figure 5: Speed up for the GA solution over the original eJSVM, with 95% confidence interval; the higher, the better.

cases, a GA solution outperformed the original eJSVM regardless of
the benchmark for which the solution was optimized. In particular,
the experiment in x86C showed speedups for all benchmarks by
using any GA solution. On average, all the solutions accelerated
different benchmarks from those for which they were optimized,
that is, geo.mean indicated positive results, except the solution
optimized for List in x86A, which slowed by 0.11%.

Furthermore, some solutions generalize well in terms of speedup
across benchmarks. For environment x86A, the solutions optimized
for CD, NBody, and Towers sped up most programs, and no pro-
gram significantly slowed down, i.e., the upper bounds of the 95%
confidence intervals were positive. Although these solutions did
not speed up Permute, we believe that the original eJSVM was
almost optimal for Permute and there was little room to improve
in x86A, because Permute did not speed up even by the solution
optimized for it, and Permute slowed down by the frequency order
as shown in Figure 3. For x86B, Bounce, NBody, Richards, Queens,
and Permutewere generalized solutions. For x86C, all the programs
were sped up with any GA solutions.

We conclude that a GA solution optimized for a particular pro-
gram is likely to improve execution speed of different programs.
Therefore, we could improve VM performance generally by using a
GA solution. In this experimentation, we used a single program for
the optimization target. We expect we could improve the generality
of the solution by using multiple programs for the optimization
target. This is one of our future works.

4.5 Cross-Machines Evaluation
We assessed whether a solution optimized for a specific environ-
ment can also speed up programs in different environments. If it
can, it is feasible to build a single VM that has the order of optimal
bytecode handlers in all environments. However, as we show be-
low, the GA solutions did not generalize well across environments.
Therefore, we need to optimize the order of the bytecode handlers
for each environment to obtain optimal performance.

In this experimentation, we measured the execution times for
benchmark programs in all environments using optimized GA so-
lutions for all environments. Figure 7 shows the speedups with
95% confidence intervals; the higher, the better. The bars in each
group indicate the speedups for the GA solutions optimized for
environments x86A, x86B, x86C, and RPi, from left to right.

For x86A, the GA solutions optimized for different environments
delivered slowdowns. For RPi, in contrast, the GA solutions for
different environments delivered speedups. For x86B and x86C, the
results depended on the solutions. The solution for RPi tended to
deliver slowdowns. Because the results varied widely depending
on the combination of the environment for which the solution is
optimized and the environment in which the program is executed,
we conclude that the GA solutions did not generalize well across
environments.

5 RELATEDWORK
Much previous work uses metaheuristic searches, including GA,
to select parameters for compiler optimizations. For example, they
were often used to select which optimizations to apply and to deter-
mine the order of optimization passes as shown in the survey [1].
Cooper et al. [5] used a GA to decide the sequence of optimization
passes that reduced the code sizes of a binary. Kulkarni and Cavazos
[12] used neuroevolution of augmenting topologies (NEAT) [20] to
determine both the optimizations to apply and their order. Knijnen-
burg et al. [11] applied an iterative compilation approach to decide
the parameters for loop tiling and unrolling in the context of matrix
multiplication. They used the iterative compilation approach to
find good parameters in an architecturally adaptive manner. These
approaches use metaheuristics to decide parameters other than the
code arrangement for compiler optimizations.

Optimizations to change the arrangement of code blocks, such
as basic blocks and functions, are, however, well-known, too. Pettis
and Hansen [19] proposed a profile guided optimization (PGO)
of code positioning that optimizes the arrangement of both basic

7



SAC ’23, March 27-March 31, 2023, Tallinn, Estonia Wanhong Huang, Stefan Marr, and Tomoharu Ugawa

en
vi
ro
nm

en
t=

x8
6A

-5

0

5

10
sp

ee
d

up
(%

)
solution = Bounce solution = CD solution = List solution = Mandelbrot

-5

0

5

10

sp
ee

d
up

(%
)

solution = NBody solution = Permute solution = Queens solution = Richards

-5

0

5

10

sp
ee

d
up

(%
)

solution = Sieve solution = Storage solution = Towers

en
vi
ro
nm

en
t=

x8
6B

-5

0

5

10

15

sp
ee

d
up

(%
)

solution = Bounce solution = CD solution = List solution = Mandelbrot

-5

0

5

10

15

sp
ee

d
up

(%
)

solution = NBody solution = Permute solution = Queens solution = Richards

-5

0

5

10

15

sp
ee

d
up

(%
)

solution = Sieve solution = Storage solution = Towers

en
vi
ro
nm

en
t=

x8
6C

-5
0
5

10
15
20
25

sp
ee

d
up

(%
)

solution = Bounce solution = CD solution = List solution = Mandelbrot

-5
0
5

10
15
20
25

sp
ee

d
up

(%
)

solution = NBody solution = Permute solution = Queens solution = Richards

B
ounce

C
D

L
ist

M
andelbrot

N
B

ody
P

erm
ute

Q
ueens

R
ichards

S
ieve

S
torage

T
ow

ers
geo.m

ean

-5
0
5

10
15
20
25

sp
ee

d
up

(%
)

solution = Sieve

B
ounce

C
D

L
ist

M
andelbrot

N
B

ody
P

erm
ute

Q
ueens

R
ichards

S
ieve

S
torage

T
ow

ers
geo.m

ean

solution = Storage

B
ounce

C
D

L
ist

M
andelbrot

N
B

ody
P

erm
ute

Q
ueens

R
ichards

S
ieve

S
torage

T
ow

ers
geo.m

ean

solution = Towers

B
ounce

C
D

L
ist

M
andelbrot

N
B

ody
P

erm
ute

Q
ueens

R
ichards

S
ieve

S
torage

T
ow

ers
geo.m

ean

Figure 6: Cross-benchmark evaluation results for three x86 environments.

8



Optimizing the Order of Bytecode Handlers in Interpreters using a Genetic Algorithm SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

−10

0

10

sp
ee

d
up

(%
)

x86A

−10

0

10

sp
ee

d
up

(%
)

x86B

−10

0

10

sp
ee

d
up

(%
)

x86C

B
ounce

C
D

L
ist

M
andelbrot

N
B

o
dy

P
erm

ute

Q
ueens

R
ichards

S
ieve

S
torage

T
ow

ers

geo.m
ean

−10

0

10

sp
ee

d
up

(%
)

RPi

Figure 7: Cross-machines evaluation results. The bars in each
group indicate the speedups for the GA solutions optimized
for environments x86A, x86B, x86C, and RPi (left to right). A
red bar indicates that the program was executed in the same
environment as the one the solution was optimized for.

blocks and functions. Their primary goal was to reduce overhead
of the instruction memory hierarchy, such as instruction cache
misses, and TLB misses. Young et al. [22] proposed a PGO of code
arrangement to improve the accuracy of branch prediction. Recent
work on PGOs includes Panchenko et al. [18] and Chen et al. [4].

PGO of code arrangement was also well studied in the context of
dynamic compilation. Ottoni et al. applied PGO to the JIT compiler
of a PHP VM, HHVM [16, 17]. Recently, Newell and Pupyrev [15]
used a machine learning approach to reorder basic blocks. These
are developed as compiler optimization techniques. In contrast, we
applied the reordering of code blocks to a specific software, an
interpreter, and modified the source code of the software.

6 CONCLUSION
This paper demonstrated that reordering bytecode handlers of
threaded-code interpreters can improve performance, and the GA
approach is effective in finding a good handler order. Our GA finds
a handler order optimized for a specific program and a specific
environment, which is a combination of hardware and a C/C++
compiler. In our experiment using a JavaScript VM, eJSVM, the
orders of handlers found by GC substantially improved perfor-
mance of the program for which the order was optimized when
the program was executed in the same environment as the one
for which the order is optimized. Furthermore, we found that the
orders identified by GA often generalized well in terms of speedup
across programs, i.e., the order optimized for a program was likely
to speed up other programs, as well. In contrast, they did not gen-
eralize across environments. Therefore, it is feasible to develop an
optimal interpreter for each processor by searching for an optimal
order for it by GA. However, developing a single optimal interpreter
for all processors is not feasible with our approach.

Our future work includes to reorder the interpreter binary rather
than reordering the interpreter source code so that bytecode han-
dlers reordered by the GA cannot further be reordered by the com-
piler. Another direction of our future work is to find a more general
order across programs by optimizing for multiple programs.

ACKNOWLEDGMENTS
This workwas supported by the JSPS through JSPS KAKENHI Grant
Numbers JP18KK0315 and JP22H03566, as well as the Engineering
and Physical Sciences Research Council (EP/V007165/1) and a Royal
Society Industry Fellowship (INF\R1\211001).

REFERENCES
[1] Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina

Silvano. 2019. A Survey on Compiler Autotuning using Machine Learning. ACM
Comput. Surv. 51, 5 (2019), 96:1–96:42. https://doi.org/10.1145/3197978

[2] James R. Bell. 1973. Threaded Code. Commun. ACM 16, 6 (1973), 370–372.
https://doi.org/10.1145/362248.362270

[3] Kevin Casey, M. Anton Ertl, and David Gregg. 2007. Optimizing Indirect Branch
Prediction Accuracy in Virtual Machine Interpreters. ACM Trans. Program. Lang.
Syst. 29, 6 (2007), 37–es. https://doi.org/10.1145/1286821.1286828

[4] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO: automatic
feedback-directed optimization for warehouse-scale applications. In Proc. Interna-
tional Symposium on Code Generation and Optimization (CGO ’16). ACM, 12–23.
https://doi.org/10.1145/2854038.2854044

[5] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. 1999. Optimizing for
Reduced Code Space using Genetic Algorithms. In Proc. Workshop on Languages,
Compilers, and Tools for Embedded Systems (LCTES ’99). ACM, 1–9. https://doi.
org/10.1145/314403.314414

[6] Charlie Curtsinger and Emery D. Berger. 2013. STABILIZER: statistically sound
performance evaluation. In Proc. Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’13). ACM, 219–228. https://doi.org/10.1145/
2451116.2451141

[7] Kai Grunert. 2020. Overview of JavaScript Engines for Resource-Constrained
Microcontrollers. In Proc. International Conference on Smart and Sustainable
Technologies (SpliTech ’20). 1–7. https://doi.org/10.23919/SpliTech49282.2020.
9243749

9

https://doi.org/10.1145/3197978
https://doi.org/10.1145/362248.362270
https://doi.org/10.1145/1286821.1286828
https://doi.org/10.1145/2854038.2854044
https://doi.org/10.1145/314403.314414
https://doi.org/10.1145/314403.314414
https://doi.org/10.1145/2451116.2451141
https://doi.org/10.1145/2451116.2451141
https://doi.org/10.23919/SpliTech49282.2020.9243749
https://doi.org/10.23919/SpliTech49282.2020.9243749


SAC ’23, March 27-March 31, 2023, Tallinn, Estonia Wanhong Huang, Stefan Marr, and Tomoharu Ugawa

[8] Yuta Hirasawa, Hideya Iwasaki, Tomoharu Ugawa, and Hiro Onozawa. 2022.
Generating Virtual Machine Code of JavaScript Engine for Embedded Systems.
Journal of Information Processing 30 (2022), 679–693. https://doi.org/10.2197/
ipsjjip.30.679

[9] John H Holland. 1992. Genetic algorithms. Scientific american 267, 1 (1992),
66–73.

[10] Takafumi Kataoka, Tomoharu Ugawa, and Hideya Iwasaki. 2018. A Framework
for Constructing Javascript Virtual Machines with Customized Datatype Repre-
sentations. In Proc. Symposium on Applied Computing (SAC ’18). ACM, 1238–1247.
https://doi.org/10.1145/3167132.3167266

[11] Peter M. W. Knijnenburg, Toru Kisuki, and Michael F. P. O’Boyle. 2003. Com-
bined Selection of Tile Sizes and Unroll Factors Using Iterative Compilation. J.
Supercomput. 24, 1 (2003), 43–67. https://doi.org/10.1023/A:1020989410030

[12] Sameer Kulkarni and John Cavazos. 2012. Mitigating the compiler optimization
phase-ordering problem using machine learning. In Proc. Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA ’12). ACM,
147–162. https://doi.org/10.1145/2384616.2384628

[13] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic. 1999.
Genetic Algorithms for the Travelling Salesman Problem: A Review of Repre-
sentations and Operators. Artificial Intelligence Review 13, 2 (1999), 129–170.
https://doi.org/10.1023/A:1006529012972

[14] Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. 2016. Cross-Language
Compiler Benchmarking: Are We Fast Yet?. In Proc. Symposium on Dynamic
Languages (DLS ’16). ACM, 120–131. https://kar.kent.ac.uk/63815/

[15] A. Newell and S. Pupyrev. 2020. Improved Basic Block Reordering. IEEE Trans.
Comput. 69, 12 (2020), 1784–1794. https://doi.org/10.1109/TC.2020.2982888

[16] Guilherme Ottoni. 2018. HHVM JIT: a profile-guided, region-based compiler
for PHP and Hack. In Proc. Conference on Programming Language Design and
Implementation (PLDI ’18). ACM, 151–165. https://doi.org/10.1145/3192366.
3192374

[17] Guilherme Ottoni and Bin Liu. 2021. HHVM Jump-Start: Boosting Both Warmup
and Steady-State Performance at Scale. In Proc. International Symposium on Code
Generation and Optimization (CGO ’21). IEEE, 340–350. https://doi.org/10.1109/
CGO51591.2021.9370314

[18] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. BOLT:
A Practical Binary Optimizer for Data Centers and Beyond. In Proc. International
Symposium on Code Generation and Optimization (CGO ’19). IEEE, 2–14. https:
//doi.org/10.1109/CGO.2019.8661201

[19] Karl Pettis and Robert C. Hansen. 1990. Profile Guided Code Positioning. SIGPLAN
Not. 25, 6 (1990), 16–27. https://doi.org/10.1145/93548.93550

[20] Kenneth O. Stanley and Risto Miikkulainen. 2002. Efficient Reinforcement Learn-
ing Through Evolving Neural Network Topologies. In Proc. Genetic and Evolu-
tionary Computation Conference (GECCO ’02). Morgan Kaufmann, 569–577.

[21] Masahiro Yasugi, Yuki Matsuda, and Tomoharu Ugawa. 2013. A proper per-
formance evaluation system that summarizes code placement effects. In Proc.
Workshop on Program Analysis for Software Tools and Engineering (PASTE ’13).
ACM, 41–48. https://doi.org/10.1145/2462029.2462035

[22] Cliff Young, David S. Johnson, David R. Karger, and Michael D. Smith. 1997. Near-
optimal Intraprocedural Branch Alignment. In Proc. Conference on Programming
Language Design and Implementation (PLDI ’97). ACM, 183–193. https://doi.org/
10.1145/258915.258932

10

https://doi.org/10.2197/ipsjjip.30.679
https://doi.org/10.2197/ipsjjip.30.679
https://doi.org/10.1145/3167132.3167266
https://doi.org/10.1023/A:1020989410030
https://doi.org/10.1145/2384616.2384628
https://doi.org/10.1023/A:1006529012972
https://kar.kent.ac.uk/63815/
https://doi.org/10.1109/TC.2020.2982888
https://doi.org/10.1145/3192366.3192374
https://doi.org/10.1145/3192366.3192374
https://doi.org/10.1109/CGO51591.2021.9370314
https://doi.org/10.1109/CGO51591.2021.9370314
https://doi.org/10.1109/CGO.2019.8661201
https://doi.org/10.1109/CGO.2019.8661201
https://doi.org/10.1145/93548.93550
https://doi.org/10.1145/2462029.2462035
https://doi.org/10.1145/258915.258932
https://doi.org/10.1145/258915.258932

	Abstract
	1 Introduction
	2 Background
	2.1 eJS
	2.2 Threaded-code Interpreter
	2.3 Opportunity of Handler Reordering Optimization
	2.4 Preliminary Evaluation

	3 Genetic Algorithm
	3.1 Solution Representation
	3.2 Crossover
	3.3 Mutation
	3.4 Selection
	3.5 Making VMs from Chromosomes

	4 Evaluation
	4.1 Experimental Environment
	4.2 Choosing the Representation and Selection Operator for the GA
	4.3 Performance Improvements by GA
	4.4 Cross-Benchmark Evaluation
	4.5 Cross-Machines Evaluation

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

