
Tanks: Multiple reader, single writer actors

Joeri De Koster Stefan Marr Theo D’Hondt Tom Van Cutsem
Vrije Universiteit Brussel,

Pleinlaan 2,
B-1050 Brussels, Belgium

jdekoste@vub.ac.be stefan.marr@vub.ac.be tjdhondt@vub.ac.be tvcutsem@vub.ac.be

Abstract
In the past, the Actor Model has mainly been explored in
a distributed context. However, more and more application
developers are also starting to use it to program shared-
memory multicore machines because of the safety guar-
antees it provides. It avoids issues such as deadlocks and
race conditions by construction, and thus facilitates con-
current programming. The tradeoff is that the Actor Model
sacrifices expressiveness with respect to accessing shared
state because actors are fully isolated from each other (a.k.a.
“shared-nothing parallelism”). There is a need for more high
level synchronization mechanisms that integrate with the ac-
tor model without sacrificing the safety and liveness guar-
antees it provides. This paper introduces a variation on the
communicating event-loops actor model called the TANK
model. A tank is an actor that can expose part of its state
as a shared read-only resource. The model ensures that any
other actor will always observe a consistent version of that
state, even in the face of concurrent updates of the actor that
owns that state.

1. Introduction
The usefulness of the actor model [4] has mainly been ex-
plored in a distributed setting, where the actors directly map
onto the different distributed nodes in the system. Currently,
the actor model is gaining popularity as the single-node con-
currency mechanism of choice in modern languages such as
Scala [16] and Clojure [23]. A recent study [21] has shown
that 56% of the examined Scala programs use actors purely
for concurrency in a non-distributed setting. That same study
has shown that in 68% of those applications, the program-

[Copyright notice will appear here once ’preprint’ option is removed.]

mers mixed actor library constructs with other concurrency
mechanisms. When asked for the reason behind this de-
sign decision, one of the main motivations programmers
brought forward was inadequacies of the actor model, stating
that certain protocols are easier to implement using shared-
memory than using asynchronous communication mecha-
nisms without shared state. In the case of Scala, developers
can fall back on the underlying shared-memory concurrency
model. This is, however, not always possible. For example
in languages that strictly enforce the no-shared-state rule of
the actor model.

In practice, the actor model is either made available via
dedicated programming languages (actor languages), or via
libraries in existing languages. Actor languages are mostly
pure, in the sense that they often strictly enforce the isolation
of actors: the state of an actor is fully encapsulated, cannot
leak, and asynchronous access to it is enforced. Examples
of pure actor languages include Erlang [6], E [14], Ambi-
entTalk [22], SALSA [24] and Kilim [20]. The major bene-
fit of pure actor languages is that the developer gets strong
safety guarantees: low-level data races are ruled out by de-
sign. The drawback is however that it is difficult to express
shared mutable state in these languages.

Actor libraries on the other hand are often added to an
existing language whose concurrency model is based on
shared-memory multithreading. Examples for Java include
ActorFoundry [7] and AsyncObjects [2]. Scala, which in-
herits shared-memory multithreading as its standard concur-
rency model from Java, features multiple actor frameworks,
such as Scala Actors [11] and Akka [1]. These libraries have
in common that they do not enforce actor isolation, i. e.,
they do not guarantee that actors do not share mutable state.
The upside is that developers can easily use the underlying
shared-memory concurrency model as an “escape hatch”,
when direct sharing of state is the most natural or most ef-
ficient solution. However, once the developer chooses to go
this route, the benefits of the high-level actor model are lost,
and the developer typically has to resort to manual locking
to prevent data races.

Combining this knowledge with the results from the
aforementioned study [21], we can conclude that, on the

1 2013/10/24



one hand, the pure actor model is a useful programming
model for exploiting shared-memory concurrency as it pro-
vides the programmer with a number of safety guarantees.
On the other hand, in an amount of instances it has proven
too restrictive. There is a need for high level synchronization
mechanisms that integrate well with the actor model.

This paper aims to remove some of the restrictions of
pure actor languages in order to make them more useful
in the context of shared-memory concurrency. This paper
introduces a novel programming model called TANK. The
name is a derivative from vats in the E programming lan-
guage. While vats are opaque containers for objects, tanks
are transparent containers (picture a fish tank). Vats enforce
asynchronous communication to observe each other’s state
while tanks are allowed to do that synchronously. Tanks
can directly observe each other’s state without having to go
through the message passing system. The motivation behind
TANK is to allow a programmer to express common pro-
gramming patterns involving shared state within the event-
loop actor model. More specifically it targets applications
that are typically implemented using threads and single-
writer multiple-reader locks.

2. Communicating event-loops
The concurrency model of TANK is based on the event-
loop model of E [14] and AmbientTalk [22] where actors
are represented by vats. The communicating event-loop ac-
tor model marries the actor model with object oriented pro-
gramming. In this model, each vat has a single thread of ex-
ecution (the event-loop), an object heap and an event queue.
Each object in a vat’s object heap is owned by that vat and
those objects are owned by exactly one vat. Within a vat,
references to objects owned by that same vat are called near
references. References to objects owned by other vats are
called far references (see figure 1). The type of reference
determines the access capabilities of that vat’s thread of ex-
ecution on the referenced object.

Vat A Vat B

event-loopevent-queue event-loopevent-queue

object

far referencenear
reference

Figure 1. The event-loop actor model

Generally, actors are introduced to one another by ex-
changing addresses. In the event-loop actor model such an
address is always in the form of a far reference to an ob-
ject. The referenced object then defines how another actor
can interface with that actor. The big difference between
communicating event-loops and traditional actor languages
is that traditional actor languages usually only provide a sin-
gle entry point or address to an actor. An event-loop actor

can define multiple objects and hand out different references
to those objects.

Asynchronous communication. Vats are not first class en-
tities and do not send messages to each other directly. In-
stead, objects owned1 by different vats send asynchronous
messages to each other using far references to objects in-
side another vat. An asynchronous message sent to an ob-
ject in another vat is enqueued in the event queue of the vat
that owns the receiver object. The thread of execution of that
vat is an event-loop that perpetually takes one event from its
event queue and deliver it to the local receiver object. Hence,
events are processed one by one. The processing of a single
event is called a turn.

Synchronous communication. The event-loop of a vat can
only process synchronous messages when the receiver object
is owned by the vat that is processing that message. In
other words, a vat can only send synchronous messages to
near references. Any attempt to synchronously access a far
reference is considered to be an erroneous operation. This
limitation has a number of benefits and breaking the model
by removing this restriction leads to a number of problems,
which are explained below.

Atomic turn property
With the macro-step semantics [5], the actor model provides
an important property for formal reasoning about program
semantics, which also provides additional guarantees to fa-
cilitate application development. The macro-step semantics
says that in an actor model, the granularity of reasoning is
at the level of a turn. This means that the processing of a
single turn can be regarded as being processed in a single
atomic step. Throughout the rest of this paper we will refer
to this property as the atomic turn property. The atomic
turn property leads to a convenient reduction of the overall
state-space that has to be regarded in the process of formal
reasoning. Furthermore, this property is directly beneficial
to application programmers as well because the amount of
processing done within a single turn can be made as large or
as small as necessary, which reduces the potential for prob-
lematic interactions. This means that the event-loop actor
model is free of low-level data races. However, as the actor
model only guarantees atomicity within a single turn, high-
level race conditions can still occur with bad interleaving of
different messages.

Consider the example shown in figure 2. There are three
vats created on lines 1, 14 and 19. Evaluating the vat
expression will create a new vat with an event-loop, an
empty event-queue and a single object in its heap for which
the interface is defined by the body of the vat syntax.
Evaluating the vat syntax returns a far reference to the
object that was created. On line 1, a vat is created that
contains a database of accounts and allows users to withdraw

1 An object is owned by an vat if it is part of that vat’s object heap

2 2013/10/24



1 let bank = vat {
2 db = ...
3 deposit(id, amount) {
4 db[id] += amount
5 }
6 withdraw(id, amount) {
7 db[id] -= amount
8 }
9 summary() {

10 print(sum(db.values))
11 }
12 }
13

14 let client = vat {
15 bank<-withdraw(my_id, amount)
16 bank<-deposit(other_id, amount)
17 }
18

19 let manager = vat {
20 bank<-summary()
21 }

Figure 2. Bank account example

and deposit money to the different bank accounts. There is
also a method to query the bank for the total sum of all its
account balances. On line 14, a client vat is created that
wants to transfer money from his account to another account.
Lastly, on line 19 there is a manager vat that queries the
bank for the total sum of all account balances.

The asynchronous messages sent by the client on
lines 15 and 16 (we use the arrow notation, “<-”, for
asynchronous communication and the dot notation, “.”,
for synchronous communication) can potentially be inter-
leaved with the summary message sent on line 20 by the
manager potentially causing a race condition. This hap-
pens when the summary event is being processed in be-
tween the deposit and withdraw messages. This type of high
level race condition is typically avoided in the actor model
by coarsening up the amount of operations in a single event.

Consider the example shown in figure 3 where we re-
placed the deposit and withdraw methods with a sin-
gle transfer method. The atomic turn property guar-
antees that the transfer event can be considered as an
atomic operation. Processing that event can under no cir-
cumstances be run concurrently with other events belong-
ing to the same actor such as the summary message. Be-
cause the transfer message does not alter the invariant
total sum of all account balances in the bank, any summary
messages processed before and after the transfer mes-
sage should always observe the same total sum. Generally
speaking, in-between turns (a turn is the processing of a sin-
gle event), the programmer should make sure that the actor is
in a consistent state as that state can potentially be observed

1 let bank = vat {
2 ...
3 transfer(from_id, to_id, amount) {
4 db[from_id] -= amount
5 db[to_id] += amount
6 }
7 ...
8 }
9

10 let client = vat {
11 bank<-transfer(my_id, other_id, amount)
12 }
13

14 ...

Figure 3. Bank account example revised

or altered by other incoming messages such as the summary
message in our example.

It is important to note that the event-loop actor model
does not provide any synchronization mechanism for groups
of messages. For this paper we assume that in a correct
application, from a programmer’s point of view, after the
processing of a single turn, an actor can be considered to
be in a consistent state.

3. The TANK model
The TANK model is a variation on the communicating event-
loop actor model where vats are represented by tanks. In the
same way as with vats, a tank’s state is conceptually sep-
arated from other tanks. Under no circumstances can any
tank modify another tank’s state. The main difference be-
tween a tank and a vat is that tanks are allowed to employ
synchronous communication to read each other’s state. In
the TANK model, if a tank holds a reference to an object,
independent of whether that reference is near or far, it can
be accessed synchronously by that tank’s event-loop. There
are however a number of restrictions put on what is possible
when synchronously accessing the different types of refer-
ences. In the case of a near reference, the same applies as
with the traditional vat model: the tank is allowed to syn-
chronously read from and write to a near reference’s ob-
ject state. With far references however, a tank’s event-loop
is only allowed to perform read operations on the referenced
object.

3.1 Synchronous communication in the TANK model
In the TANK model any actor can synchronously invoke
methods on far references. The only limitation being those
methods cannot modify that object’s state.

Figure 4 illustrates the use of synchronous communica-
tion on far references in TANK. Note that there is always an
implicit “main” tank. The main tank has its own event-loop
and object heap and starts with a single event in its event-
queue that is responsible for evaluating the program expres-

3 2013/10/24



1 let container = tank {
2 value = 0
3 set(v) {
4 value = v
5 }
6 get() {
7 value
8 }
9 }

10

11 let value = container.get()
12 container<-set(value + 1)

Figure 4. A container with a getter and setter method

sion. On line 11, the main tank can synchronously invoke the
get method of the container. This is allowed because the
get method is a read-only operation that does not mutate
the internal state of the container tank. Conceptually,
the main tank will first take a snapshot of the container
tank’s state before executing the get method. For the du-
ration of its current turn, the main tank will always observe
the same value from the container. Even when that con-
tainer is being modified concurrently. Attempting to modify
the state of another tank using a synchronous operation is
considered to be an erroneous operation. For example, syn-
chronously invoking the set method would result in an er-
ror as that method assigns a new value to the value field of
our container. Using asynchronous communication to mod-
ify the state of another tank is allowed. For example, to in-
crease the value of our container, on line 12, we asyn-
chronously send the set message. Once the event-loop of
the container is ready to process the event associated
with that message, the set method is executed by the event-
loop of the container tank, which has both read and write
access to the value field. Processing that message can be
done in parallel with any future read operations of the main
tank.

1 ...
2 let manager = tank {
3 bank.summary()
4 }

Figure 5. The manager tank can synchronously invoke the
read-only summary method

Similarly, in figure 5 we rewrote the asynchronous mes-
sage of the manager vat of figure 3 and replaced every occur-
rence of the keyword “vat” with “tank”. The TANK model
allows us to change the asynchronous call to summary
on line 3 by a synchronous call. In this case, TANK will
guarantee that the atomic turn property is still valid. Syn-
chronously executing the summary method will always re-
turn the correct sum of all account balances even though the
summary method can potentially be executed concurrently

with a transfer method. Please note that, from the read-
ing tank’s perspective, the atomic turn property also only
holds for the duration of a turn. For the duration of the pro-
cessing of a single event of the manager tank, the atomic
turn property ensures that the manager tank will always ob-
serve the same values for all accounts in the bank’s database.
However, after the manager has completed processing its
turn, those values can potentially have been changed. The
TANK model only guarantees consistency on the turn bound-
aries. This leads us to the following important property of
TANK:

TANK preserves the atomic turn property. Any tank
has synchronous read-only access to the internal state of any
other tank. This means that any number of reader methods
can be executed in parallel with at most one writer method.
Any tank executing reader methods of objects inside an-
other tank will always perceive a consistent snapshot of that
tank’s internal state. Any state updates of concurrently run-
ning events are not visible for the duration of the turn.

The TANK model has a lot of similarities to multiple
reader, single writer locking. However, with reader-writer
locks only a single writer can exist at any given time but
more than one process can write the same data over the
course of execution. Contrary to reader-writer locks, at
all times, only a single tank can have write access to its
own data. Another difference between both synchronization
mechanisms is that with reader-writer locks a single writer
lock will block all reader processes while in the TANK model
all tanks are guaranteed to always make progress, even in the
face of concurrent read and write operations. In the original
event-loop actor model, the atomic turn property was guar-
anteed by sequentially processing messages one by one in
the event-loop. In the TANK model, tanks are allowed to
observe another tank’s state in parallel with the owner of
that state, which was impossible in the original event-loop
model. The difficulty of implementing the TANK model is to
ensure that the atomic turn property is still valid while still
maintaining parallel execution of the different event-loops
(see section 4).

Allowing synchronous communication between actors
does not change the state encapsulation properties of com-
municating event-loops and the TANK model. When access-
ing a far reference, the referenced object defines what part
of the object heap from that actor is accessible. The TANK
model does not change this property. It changes only the
way already accessible state can be accessed. While in the
traditional event-loop actor model, a vat would have to em-
ploy asynchronous communication to decompose an object
to which it has a far reference, the TANK model allows the
different tanks to use synchronous communication for that
purpose.

4 2013/10/24



4. An implementation of the TANK model
There are two important properties for the processing of
events that have to be upheld by any implementation of the
TANK model:

• Any turn is processed in isolation. The TANK model en-
sures that, during the processing of a single event, the
tank processing that event will see a consistent snapshot
of the whole TANK state-space. Any state updates of con-
currently running events are not visible for the duration
of the turn.

• Any turn is processed atomically. A turn is always pro-
cessed only once and is always processed to its entirety.

Software Transactional Memory (STM) [19] is a concur-
rent programming model that provides us with both prop-
erties. Other implementation strategies may be used to im-
plement the tank model. However, for this paper we will
discuss an implementation strategy that uses transactional
memory to ensure atomicity and isolation for the process-
ing of events. An implementation for this instantiation of
the TANK model can be found online.2 The processing of
events has a transactional behavior, as such, STM is a good
implementation method for the TANK model. However, it is
important to note that while events have transactional be-
havior, the TANK model does not have any STM specific
keywords to delineate transactions. Rather than introducing
new keywords, the processing of a single event is consid-
ered a single transaction. To uphold the properties discussed
above, the underlying implementation of tank uses a particu-
lar type of STM that has the following properties. To ensure
that all events are processed in isolation, the entire tank’s
heap is part of the transactional memory. Typical STMs only
apply transactional behavior to a user defined subset of the
memory space because there is a significant computational
overhead in making every memory location part of the trans-
actional memory. This was a deliberate design decision in
TANK to better integrate with actors. To ensure that all events
are processed atomically and are processed only once the
STM should avoid aborting transactions. The following sec-
tion details the STM used for our implementation of the
TANK model.

4.1 The TANK STM: A Multi-Version History STM
Most STMs can be divided into two broad categories: pes-
simistic and optimistic STMs. A pessimistic STM assumes
that all concurrent access to the same data is dangerous and
should be prevented. Usually, this involves some locking
mechanism to ensure transactional atomicity. The disadvan-
tage of this approach is that because of the locking writers
can potentially block reading transactions. Optimistic STMs
on the other hand assume that, in most cases, concurrent ac-
cess to shared state will not conflict. Processes can read from

2 http://soft.vub.ac.be/˜jdekoste/shacl

and write to shared state concurrently. If any conflict is de-
tected, the transaction is aborted (rolled back) and is retried.
Typically, optimistic STMs have difficulties in handling non-
idempotent operations (such as I/O) because they cannot
simply be rolled back and redone when a transaction fails to
commit. TANK supports a number of such non-idempotent
operations such as printing something on the screen or send-
ing an asynchronous message. This means that the imple-
mentation of TANK cannot support aborting transactions.
Not being able to support aborting transactions means we
have the following restrictions for our STM:

1. All writers have to have access to the latest version of the
memory. Writing to a memory location based on an old
version would otherwise cause the transaction to be in an
inconsistent state and would have to be aborted.

2. All readers have to see values from a single snapshot of
the memory. Otherwise readers could read from memory
location that change value during a transaction which
would then need to be aborted.

A Multi-Version History STM [17] is an optimistic ap-
proach to transactional memory where read-only transac-
tions are guaranteed to successfully commit by keeping mul-
tiple versions of the transactional objects. The only transac-
tions that can abort in such a system are conflicting writers.
The TANK model allows only a single writer for each ob-
ject, namely the owner of that object. If there is only one
writer, there cannot be any conflicting writers. If all readers
are guaranteed to succeed and there are no conflicting writ-
ers, all transactions will succeed and we have successfully
supported both restrictions.

Tank A Tank B

event-loopevent-queue event-loopevent-queue

version: v1 version: v2

Tank B
Tank C

v1

v2

Tank A v1
Field 1

v1

Field 2

v2

1
"A"

2
"B"

Object

Figure 6. The tank model

Figure 6 illustrates how the multi-version history STM
is integrated with tanks. Each tank t stores its own version
number vn. That number represents the latest version that
was committed and is considered to be consistent. A tank
also keeps track of what versions it is reading from other
tanks in an associative data-structure. In our example Tank
A is reading from Tank B on version v1 and from Tank
C on version v2. Note that the latest consistent version of
Tank B, namely v2, is not the same as the version Tank A
is reading. Tank B is currently only reading from Tank A
on version v1. Because a tank only needs to guarantee con-
sistent reads while in a single turn, every tank only keeps
track of the versions it is reading for the duration of that

5 2013/10/24

http://soft.vub.ac.be/~jdekoste/shacl


turn. The processing of any following turns can potentially
observe a different version of those tanks’ state. After the
turn has ended, the tracked versions are discarded. For ex-
ample, if Tank A is done processing its current event it will
discard the knowledge that it was reading from Tank B on
version v1. Any event that is processed afterwards by Tank
A’s event-loop and also reads from Tank B will observe
version v2 of that tank as that is the current version Tank
B is in. After an event is processed, a tank can commit any
modifications it has made. Committing a new consistent ver-
sion of a tank’s object heap is done simply by increasing its
own version number.

4.2 An example
Consider the example in figure 5 again. The asynchronous
message send summary was replaced with a synchronous
call to that method. In the original example a summarymes-
sage was sent to the bank tank and event-loop of that tank
was the one processing that method. However, replacing
that asynchronous message with a synchronous call means
that the event-loop of the manager tank is the one pro-
cessing that call. Because of that, the processing of the
summary method can potentially run concurrently with
the transfer method. The implementation of the TANK
model should make sure that the summary method always
returns the same result. Even in the face of concurrent up-
dates by the transfer method.

From the manager tank’s perspective: The manager
tank executes the summary method. To do so, it must read
the db field from the other tank. When it reads the value of
that field for the first time, the main tank registers what ver-
sion from the other tank it is reading. Any consecutive reads
of any fields in that tank will be done with respect to that
version. When the manager tank’s turn has ended it dis-
cards all registered version numbers and is ready to process
incoming messages again. When a message would cause the
event-loop of the manager tank to process another event a
new transaction is started.

From the bank tank’s perspective: In figure 3, the client
tank sends a transfer message to the bank tank. When
the bank tank is ready to process this event, the tank will
modify the database twice and then return. Updating a field
with a new value will result in the creation of a new version
for that field. For the duration of that event, the tank process-
ing that event will always observe the latest version of those
fields. Assigning to the same field twice does not create a
new version for each assignment. Uncommitted versions are
simply overwritten with the new version. After the event has
been processed to completion the tank will commit the new
version for the db field by increasing its own version number
and proceed with processing the next event in its queue.

4.3 Garbage collecting old versions
One of the main challenges when maintaining multiple ver-
sions in software transactional memory is knowing what old
version can be garbage collected and when. In the current
implementation of the TANK model, old versions are never
garbage collected, which wastes memory space. While it is
impossible for a STM garbage collection algorithm to be
space optimal, there exist efficient algorithms for collecting
old versions [17]. This paper focuses more on the correct-
ness of the proposed model rather than an efficient imple-
mentation. Part of our future work includes extending our
implementation with an efficient garbage collector for old
versions, for example those that are no longer reachable or
read by any tank in the system.

5. Related work
The restrictions of the actor model, especially with respect
to accessing shared state, have been recognized by many.
The solutions to this problem however vary depending on
context:

Passing arguments by reference. There is a body of re-
lated work that care about sharing state through efficiently
passing the arguments of a message between actors by ref-
erence. Some of them abandon the safety guarantees deliv-
ered by the actor model for the sake of performance, e. g.,
Scala [11]. Others use static analysis to determine when it
is safe to pass an object by reference, e. g., SOTER [15]
and Kilim [20]. And others use a runtime ownership flag
to attribute message arguments to the different actors in the
system, e. g., Gruber and Boyer [10]. This class of research
wants to avoid the cost of deep copying a data-structure
when it is passed by reference. While this is useful in the
context of ownership transfer, it does not really solve the
state-sharing issue in the actor model. While objects can
migrate between different actors, there is always only one
owner for each object. It is impossible for different actors to
read from a shared data structure in parallel.

Mixing actors with other concurrency models. Another
body of related work cares about mixing the actor model
with other concurrency mechanisms to allow the program-
mer to express different synchronization patterns. Scala ac-
tors [12] do not enforce the strict rules of the actor model.
This means that programmers are free to share state and use
traditional locking to protect concurrent access to that shared
state. Unfortunately, the two concurrency mechanisms in
Scala, namely actors and threads, are not always well inte-
grated with one another and programmers are forced to re-
sort to manual locking to prevent data races.

The Clojure [23] programming language provides primi-
tives to use message passing based concurrency (agents) as
well as software transactional memory. In Clojure, both con-
currency models have some integration with one another.
For example, any message sent to an agent from within a

6 2013/10/24



transaction is buffered. If that transaction fails to commit,
the buffered messages are discarded and the transaction is
restarted.

Another attempt to mix actors with software transactional
memory are Akka’s transactors [3]. Here actors use a general
STM system which allows the interaction with for instance
threads using the STM as well. Thus, the actors do not
provide the strong isolation properties we would like to
preserve. As an interesting design point of these transactors
is that they can be used to coordinate the state changes of
different actors by utilizing the transaction boundaries as
synchronization points. Similar to barriers, all actors that
participate in a coordinated transaction need to complete the
transaction before any of them can make progress beyond it.
In the communicating event-loop model, on which TANK is
based, a similar coordination can be achieved by grouping
futures in order to coordinate multiple actors.

Coarse-grained synchronization. Finally, there is a body
of related work that cares about integrating coarse-grained
synchronization mechanisms with other concurrency mech-
anisms. Some of them with static compiler annotations. For
example Demsky and Lam [9] propose a number of com-
piler annotations for defining static view definitions. A view
is a coarse-grained locking mechanism for concurrent Java
objects. Similarly, Axum [13] is an actor based language
that allows static view-like definitions to synchronize ac-
cess to shared state. Unfortunately, in both models, access-
ing shared state without the use of views is not prohibited
by the compiler thereby compromising any general assump-
tions about thread safety. Another approach tried to auto-
mate parallelization by evaluating different read-only mes-
sages in the message queue of an actor in parallel, namely
Parallel Actor Monitors [18] (PAM). While PAM enables
parallelism inside a single actor, it does not provide a so-
lution for sharing state between different actors. Finally, in
previous work [8] of the authors of this paper, we investi-
gated an extension of the actor model where parallel access
to shared state is allowed by introducing the concepts of do-
mains and views. A domain is an object heap that is not asso-
ciated with a particular actor. Any actor can synchronously
access objects inside that domain after acquiring a shared
read- or exclusive write-view on that domain. Acquiring a
view is an asynchronous operation that registers a callback
event for when that domain becomes available for shared or
exclusive access. The big difference between domains and
views and the approach in this paper is that views always re-
quire the actor to use at least one asynchronous message to
acquire the view. In this approach tanks can synchronously
access any shared resource as long as they have a reference
to it regardless of any other context. An additional benefit of
the TANK model is that, contrary to views, reader operations
can be executed in parallel with write operations.

6. Conclusion
The actor model is a concurrent programming model that
provides a number of safety guarantees with regards to par-
allel programming such as deadlock and data race freedom.
However, in its pure form it has shown too restrictive as
programmers mix the actor model with other concurrency
models. They opt to do so because of the lack of shared-
memory concurrency. This shows that there is a need for
more coarse grained shared-memory synchronization mech-
anisms that are tailored towards the actor model. Introduc-
ing shared state while still maintaining the guarantees de-
livered by the original model. This paper introduces a new
model, called the TANK model, that is based on communicat-
ing event-loop actors. The benefit of tanks versus traditional
actors is that they can expose part of their state as a shared
read-only resource for other tanks. The encapsulation rules
for objects living inside a tank remain the same in compari-
son to traditional event-loop actors. A tank has access to any
object it holds a reference to. The big difference between
both models is in the type of communication tanks can use
to access those objects. In the TANK model a tank can use
synchronous method invocation on any object it holds a ref-
erence to, regardless of whether that object is part of its own
heap or of the heap of another tank. The underlying imple-
mentation of the TANK model employs transactional mem-
ory to ensure that the atomic turn property remains valid.

7. Acknowledgements
Joeri De Koster is supported by a doctoral scholarship
granted by the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen),
Belgium.

Tom Van Cutsem is a Postdoctoral Fellow of the Research
Foundation, Flanders (FWO)

References
[1] Akka. http://akka.io/.

[2] Asyncobjects framework. http://asyncobjects.
sourceforge.net/.

[3] Akka transactors, 2013. URL http://tinyurl.com/
lt5grdp.

[4] G. A. Agha. ACTORS: A Model of Concurrent Computation
in Distributed Systems. MIT Press, Cambridge, MA, USA,
1986. ISBN 0-262-01092-5.

[5] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott.
A foundation for actor computation. Journal of Functional
Programming, 7(1):1–72, 1997.

[6] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams.
Concurrent Programming in Erlang. Prentice Hall PTR, 2
edition, 1996. ISBN 013508301X.

[7] M. Astley. The actor foundry: A java-based actor pro-
gramming environment. University of Illinois at Urbana-
Champaign: Open Systems Laboratory, 1998.

7 2013/10/24

http://akka.io/
http://asyncobjects.sourceforge.net/
http://asyncobjects.sourceforge.net/
http://tinyurl.com/lt5grdp
http://tinyurl.com/lt5grdp


[8] J. De Koster, T. Van Cutsem, and T. D’Hondt. Domains:
safe sharing among actors. In Proceedings of the 2nd edi-
tion on Programming systems, languages and applications
based on actors, agents, and decentralized control abstrac-
tions, AGERE! ’12, pages 11–22, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1630-9. .

[9] B. Demsky and P. Lam. Views: Object-inspired concurrency
control. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1, pages 395–
404. ACM, 2010.

[10] O. Gruber and F. Boyer. Ownership-based isolation for con-
current actors on multi-core machines. In G. Castagna, editor,
ECOOP 2013, volume 7920, pages 281–301. Springer, July
2013. ISBN 978-3-642-39037-1. .

[11] P. Haller and M. Odersky. Scala actors: Unifying thread-
based and event-based programming. Theoretical Computer
Science, 410(2-3):202–220, 2009. ISSN 0304-3975. .

[12] P. Haller and M. Odersky. Scala actors: Unifying thread-based
and event-based programming. Theor. Comput. Sci., 410(2-3):
202–220, Feb. 2009. ISSN 0304-3975. .

[13] Microsoft Corporation. Axum programming language.
http://tinyurl.com/r5e558, 2008-09.

[14] M. S. Miller, E. D. Tribble, J. Shapiro, and H. P. Laborato-
ries. Concurrency among strangers: Programming in e as plan
coordination. In In Trustworthy Global Computing, Interna-
tional Symposium, TGC 2005, pages 195–229. Springer, 2005.

[15] S. Negara, R. K. Karmani, and G. A. Agha. Inferring owner-
ship transfer for efficient message passing. In Proceedings of
the 16th ACM symposium on Principles and practice of par-
allel programming, PPoPP ’11, pages 81–90, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0119-0. .

[16] M. Odersky, L. Spoon, and B. Venners. Programming in
Scala: A Comprehensive Step-by-step Guide. Artima Incor-
poration, USA, 1st edition, 2008. ISBN 0981531601.

[17] D. Perelman, R. Fan, and I. Keidar. On maintaining multiple
versions in stm. In Proceedings of the 29th ACM SIGACT-
SIGOPS symposium on Principles of distributed computing,
PODC ’10, pages 16–25, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-888-9. .

[18] C. Scholliers, É. Tanter, and W. De Meuter. Parallel actor
monitors. In 14th Brazilian Symposium on Programming
Languages, 2010.

[19] N. Shavit and D. Touitou. Software transactional memory.
In Proceedings of the fourteenth annual ACM symposium on
Principles of distributed computing, PODC ’95, pages 204–
213, New York, NY, USA, 1995. ACM. ISBN 0-89791-710-3.
.

[20] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors
for java. ECOOP 2008–Object-Oriented Programming, pages
104–128, 2008.

[21] S. Tasharofi, P. Dinges, and R. Johnson. Why do scala devel-
opers mix the actor model with other concurrency models? In
G. Castagna, editor, ECOOP 2013 Object-Oriented Program-
ming, volume 7920 of Lecture Notes in Computer Science,
pages 302–326. Springer Berlin Heidelberg, 2013. ISBN 978-
3-642-39037-1. .

[22] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J. Dedecker,
and W. De Meuter. Ambienttalk: Object-oriented event-driven
programming in mobile ad hoc networks. In XXVI Interna-
tional Conference of the Chilean Society of Computer Science
(SCCC’07), pages 3–12. IEEE Computer Society, 2007.

[23] L. VanderHart and S. Sierra. Practical Clojure. Apress,
Berkely, CA, USA, 1st edition, 2010. ISBN 1430272317,
9781430272311.

[24] C. A. Varela and G. A. Agha. Programming dynamically re-
configurable open systems with salsa. ACM SIGPLAN No-
tices, 36(12):20–34, 2001.

8 2013/10/24

http://tinyurl.com/r5e558

	Introduction
	Communicating event-loops
	The Tank model
	Synchronous communication in the Tank model

	An implementation of the Tank model
	The Tank STM: A Multi-Version History STM
	An example
	Garbage collecting old versions

	Related work
	Conclusion
	Acknowledgements

