
Encapsulation And Locality
A Foundation for Concurrency Support in Multi-Language Virtual Machines?

Stefan Marr1

Software Languages Lab
Vrije Universiteit Brussel, Belgium

stefan.marr@vub.ac.be

Abstract
We propose to search for common abstractions for different con-
currency models to enable high-level language virtual machines
to support a wide range of different concurrency models. This
would enable domain-specific solutions for the concurrency prob-
lem. Furthermore, advanced knowledge about concurrency in the
VM model will most likely lead to better implementation oppor-
tunities on top of the different upcoming many-core architectures.
The idea is to investigate the concepts of encapsulation and local-
ity to this end. Thus, we are going to experiment with different
language abstractions for concurrency on top of a virtual machine,
which supports encapsulation and locality, to see how language de-
signers could benefit, and how virtual machines could optimize pro-
grams using these concepts.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors; D.1.3 [Programming Techniques]: Concur-
rent Programming

General Terms Experimentation, Languages, Performance

Keywords Multi-language virtual machines, concurrency, many-
core, abstraction

1. Problem Statement
High-level language virtual machines (VMs) have become a stan-
dard platform for software development. They provide abstraction
from the underlying system in terms of hard- and software. Fur-
thermore, they provide highly optimized just-in-time compilers and
garbage collection to provide performance characteristics compa-
rable to classic low-level system programming languages. Recent
improvements and additions to VMs like the Java Virtual Machine
or Common Language Runtime enable efficient execution of a wide
range of dynamic languages. These dynamic capabilities are used
increasingly to build domain-specific languages (DSLs) on top of
these VMs. In return, DSLs enable developers to tackle their prob-
lems at an even higher level of abstraction. However, VMs have
not made the step into the many-core era by supporting language
designers to utilize concurrency and parallelism.
The main question here is, are there common abstractions for

the various concurrency models? To provide the necessary flexibil-

Copyright is held by the author/owner(s).

SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
ACM 978-1-4503-0240-1/10/10.

ity to language designers, a VM should support a wide range of dif-
ferent concurrency models. Shared memory with threads and locks
is the standard, transactional memory promises to handle some of
the software engineering challenges, actor-like message passing
systems avoid typical low-level concurrency issues, and data-flow
programming is a good fit for a number of computing problems.
They all have application where they shine, and use-cases which
are not supported that well. For a multi-language VM, choosing a
single model does not seem to be appropriate.
Implementing an unsupported models on top of a VM comes

usually with significant additional complexity as well as perfor-
mance disadvantages. Furthermore, the language specific imple-
mentation of a model on top of a VM is typically not reusable for
other languages. Examples are actor languages for the JVM, which
according to Karmani et al. either do not support reliable encapsu-
lation to avoid performance problems, or have to introduce com-
plex type systems to achieve their goal[7]. The research in the field
of software transactional memory (STM) suggest direct changes to
the runtime systems to achieve the desired performance, too[1, 12].
To achieve real abstraction instead of merely adding one concur-

rency model after another, we are searching for fundamental com-
monalities. These commonalities should allow language developers
to implement their ideas more easily, while providing the VM with
additional opportunities for optimizations to gain performance.
By approaching the question of a common abstraction, the prob-

lem of integrating different concurrency models becomes most
relevant, too. One fundamental questions is, how a module, that
is written with shared-memory libraries, interacts with a module,
which is based on the assumptions of non-shared memory and
needs to enforce strong encapsulation. A typical scenario is legacy
code. For instance, legacy programs written with shared-memory
have to integrate seamlessly with new modules, which could uti-
lizes an actor-based model that requires strict encapsulation. Other
relevant scenarios include building domain-specific concurrency
abstractions, which also require interaction between modules that
use different concurrency models.

2. Goal
The concepts we currently see as most relevant to provide such an
abstraction are encapsulation and locality. Encapsulation refers to
the guarantee given to an entity, for instance an object or an actor,
that its internal state is only accessible by itself. Locality refers
to the notion of a spacial relation between entities. For instance,
the objects encapsulated by an actor could be grouped together in
memory, which belongs to the same location. To find a suitable
representation for a VM for the notion of locality is part of this

1 Supported by a doctoral scholarship of the Institute for the Promotion of
Innovation through Science and Technology in Flanders, Belgium.



research. Thus, our goal is to experiment with virtual machine
support for these concepts and evaluate their usefulness in a multi-
language VM for many-core architectures.
To this end, concrete incarnations of the different concurrency

models, i. e., languages need to be analyzed to see how they could
benefit from these two concepts. Furthermore, these abstractions
have to be evaluated with respect to the different upcoming many-
core architectures like Tilera’s tile architecture[11].
These experiments will either indicate the applicability of the

chosen concepts to reach the desired goal, or will provide the nec-
essary indications to choose more suitable ones. In case of a posi-
tive result, we expect to gain arguments which allow us to design
concrete low-level constructs, which need to be supported by multi-
language virtual machines to allow an implementation of a wide
range of different concurrency models on top of them. Furthermore,
these results should provide us with the understanding to propose
concrete optimization strategies for the VM implementations on the
different many-core architectures.
To facilitate interoperability between different concurrency

models on top of the same VM, a framework needs to be pro-
vided, which either predefines certain rules, or gives the language
designers the means to specify how other modules, libraries, or
languages are supposed to interact with this language. Currently,
the literature discusses a number of pair-wise combinations of dif-
ferent concurrency models to propose possible semantics for their
interaction[4, 10]. However, for the proposed abstraction such a
semantics has to be more general and go beyond the approach of
finding semantics which hold only for pairs of models.

3. Research Approach
As a foundation for this research, we started with an literature sur-
vey including the implementation strategies for partitioned global
address space (PGAS) languages. They use the notion of local-
ity to divide a global address space based on physical computa-
tional nodes. Furthermore, their implementations typically com-
bine shared memory concurrency with a message-passing infras-
tructure, and thus, utilize different concurrency models to imple-
ment a language on top. The candidates for non-shared-memory,
actor-like languages are are E[8] and AmbientTalk[9]. They rep-
resent a very compelling approach for object-oriented languages.
For functional languages, Erlang is know for its concurrent nature.
Based on this literature study we will choose a number of language
concepts to experiment with. At the moment, we expect to evaluate
concepts from UPC and X10 as representative models for shared-
memory concurrency and E, AmbientTalk, and Erlang for actor-like
concurrency.
Our goal is to implement the chosen language abstractions pro-

totypically on top of an existing virtual machine. The next step is to
incorporate support for encapsulation and locality at the VM level.
Thus, we will design a virtual machine model, with an extended
instruction set and presumably a sketch for a memory model se-
mantics. Based on these facilities, we want to rebuild the same
language abstractions. This will enable us to assess the different
engineering efforts to build domain-specific language abstractions
on top. Furthermore, we also expect to get an initial intuition about
the performance related aspects on a Tilera 64-core processor.
With respect to the interoperability between different concur-

rency models, we plan to investigate how VM support could be de-
signed to provide enough flexibility to language designers but also
provide the necessary guarantees to the different concurrency mod-
els. Currently, we plan to provide the concept of encapsulation in
a flexible and possibly configurable way. Thus, it could be enabled
selectively only depending on the guarantees a module/language
requests. One way of doing this, would be in a way comparable to
X10, in which all shared-memory access from a model are trans-

formed to messages and handled safely, iff the accessed module
requires strict encapsulation.
Furthermore, we will investigate how the notion of locality

can facilitate VM implementations on many-core architectures.
Here a relevant question is how can the concept of locality be
represented flexibly in the VM. The problem we like to address
is, that PGAS languages have the notion of locality on the level
of computation nodes, which means large object heaps, where
AmbientTalk typically uses smaller groups of objects as an actor,
and in Erlang as the other extreme, actors are typically on the level
of very small groups of objects down to one object per locality.
To investigate the generality of our approach, the experiments

need to be extended to at least one other model. STM seems to be a
relevant candidate. While researchers struggles to reduce the over-
head to an acceptable level, hardware vendors start to provide the
foundations for hardware-assisted TM. Thus, they provide mech-
anisms which are itself limited, but improve the performance of
STM systems on top[2, 3]. Based on their proposals, we see a
strong correlation of STM to the notion of locality. Usually, CPUs
leverage cache-line locking or marking as an implementation strat-
egy that provides only very restricted freedom in what can be done
in a single transaction. At the moment, we believe that such a mech-
anism could be provided based the VM support for locality and
encapsulation. This would allow to implement sophisticated STM
systems on top of the restricted model the VM would offer. Even
such a restricted system would directly facilitate the implementa-
tion of concurrent data structures[5, 6].

References
[1] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha,

and T. Shpeisman. Compiler and runtime support for efficient software
transactional memory. In Proc. of PLDI’06, pages 26–37. ACM, 2006.

[2] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum. Hybrid transactional memory. In Proc. of ASPLOS’06, 2006.

[3] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a
commercial hardware transactional memory implementation. In Proc.
of ASPLOS’09, pages 157–168. ACM, 2009.

[4] J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publishers Inc., 1992. ISBN 1558601902.

[5] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack
algorithm. J. Parallel Distrib. Comput., 70(1):1–12, 2010.

[6] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. SIGARCHComput. Archit. News,
21(2):289–300, 1993.

[7] R. K. Karmani, A. Shali, and G. Agha. Actor frameworks for the jvm
platform: A comparative analysis. In Proc. of PPPJ’09. ACM, 2009.

[8] M. S. Miller, E. D. Tribble, and J. Shapiro. Concurrency among
strangers: Programming in e as plan coordination. In R. D. Nicola and
D. Sangiorgi, editors, Symposium on Trustworthy Global Computing,
volume 3705 of LNCS, pages 195–229. Springer, April 2005.

[9] T. Van Cutsem, S. Mostinckx, E. G. Boix, J. Dedecker, and W. De
Meuter. Ambienttalk: Object-oriented event-driven programming in
mobile ad hoc networks. Proc. of SCCC’07, pages 3–12, 2007.

[10] T. Van Cutsem, S.Mostinckx, andW. DeMeuter. Linguistic symbiosis
between event loop actors and threads. Computer Languages, Systems
& Structures, 35(1), June 2008.

[11] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal. On-chip
interconnection architecture of the tile processor. IEEE Micro, 27(5):
15–31, 2007.

[12] P. Wu, M. M. Michael, C. von Praun, T. Nakaike, R. Bordawekar,
H. W. Cain, C. Cascaval, S. Chatterjee, S. Chiras, R. Hou, M. Mergen,
X. Shen, M. F. Spear, H. Y. Wang, and K. Wang. Compiler and
runtime techniques for software transactional memory optimization.
Concurrency and Computation: Practice & Experience, 21(1), 2008.


