
Newspeak and Truffle: A Platform for Grace?
Stefan Marr

School of Computing
University of Kent
United Kingdom
s.marr@kent.ac.uk

Richard Roberts
School of Engineering and Computer

Science
Victoria University of Wellington

rykardo.r@gmail.com

James Noble
School of Engineering and Computer

Science
Victoria University of Wellington

kjx@ecs.vuw.ac.nz

Abstract
The Newspeak language had a strong influence on Grace’s
language design: Is a Newspeak interpreter a good starting
point for a Grace implementation?

Truffle is a framework for interpreter implementation and
leverages the Graal just-in-time (JIT) compiler to offer state-
of-the-art performance to dynamic languages. But does it
fulfill the promise, and at which cost?

This talk is a review of about two years of work on a Grace
implementation based on SOMns called Moth. What did we
achieve? How compliant is Mothwith the specification? How
much of SOMns can we reuse to support Grace? Does Truffle
live up to the promise?

1 Why another Grace implementation?
Perhaps the first question to answer when deciding to im-
plement a language is the goal of the new language imple-
mentation. While widely used languages benefit from new
implementations simply by exposing ambiguity and holes in
the specifications, for Grace there are not yet enough users
to justify such an investment.
From the outset, Grace was designed as a language for

teaching and research. Looking at its four or five implemen-
tations, we see that most of them are interpreters (Kernan is
an interpreter built in C#) or compilers to other languages
(Minigrace compiles to C and JavaScript). None of these im-
plementations focus on performance. Performance can be
a major hurdle for some research questions. For instance,
metaobject protocols have been considered impractical for
about twenty years, until it could be shown that their perfor-
mance issues can be solved [Marr et al. 2015]. Similarly, there
is an open question about whether gradual typing can be sup-
ported efficiently in a practical implementation [Takikawa
et al. 2016]. While efficiency was not a goal of the language
design [Black et al. 2010], the language should not gratu-
itously include features that cannot be implemented effi-
ciency. Grace’s current design now includes several features
(gradual typing, a deeply nested object model, language ex-
tension via dialects, inheritance from “fresh objects”, method

Grace’18, November, 04, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of Grace Workshop at SPLASH’18 (Grace’18).

aliasing over inheritance) that are sufficiently novel or com-
plex that their efficient implementation cannot be taken for
granted. To validate the language design, then, we need to
demonstrate an implementation that achieves performance
comparable with contemporary implementations of compet-
ing languages. This means the performance goal for our new
Grace implementation (called “Moth” [Hopper 1947]) is to
reach performance on a level comparable to JavaScript. We
aim to reach that goal without requiring a customVM, a team
of 100 engineers, and resources that even large companies
struggle to provide.

2 How do Newspeak and Truffle fit into
the mix?

Self [Chambers et al. 1989] and Newspeak [Bracha et al. 2010]
had amajor influences onGrace’s design. Self inspires Grace’s
foundation upon objects, rather than classes, and its view
of computation as requesting messages. Newspeak inspires
Grace’s ubiquitous nesting used to represent related abstrac-
tions, and in particular, to simulate classes with objects.

As such, an early idea was that one may be able to adapt an
existing Newspeak implementation with comparably little
effort to execute Grace programs. This intuition was con-
firmed with a one-week effort of getting Grace running on
top of a Newspeak implementation simply by translating the
AST from an existing Grace parser.

SOMns is a Newspeak implementation on top the Truffle
framework and the Graal JIT compiler [Würthinger et al.
2013, 2017]. SOMns is implemented as an abstract-syntax-
tree (AST) interpreter, which represents the language seman-
tics directly as AST nodes. Compared to more traditional
compilers and bytecode interpreters, an AST interpreter can
avoid most compile-time analyses of the input program, and
realize all aspects of the language semantics at run time.
While this approach drastically simplifies an implementation,
doing essentially all the work of checking and evaluating a
program at run time means that a naïve AST interpreter will
be slow. SOMns leverages the Java Virtual Machine, Graal
compiler, and Truffle framework so that its AST interpreter
reaches the performance of V8 JavaScript [Marr et al. 2016].
This made SOMns appealing as platform for a new Grace
implementation that has performance as a major goal.

1



Grace’18, November, 04, 2018, Boston, MA, USA Stefan Marr, Richard Roberts, and James Noble

Higgs
Java

Node.js (V8)
Moth

0.
75

1.
00

2.
00

3.
00

4.
00

10
.0
0

50
.0
0

Run-time factor, normalized to Moth (untyped)
(lower is better)

V
M

Figure 1. Comparison of Java 1.8, Node.js 10.4, Higgs VM,
and Moth. The boxplot depicts the peak-performance re-
sults for the AreWe Fast Yet benchmarks, each benchmark
normalized based on the result for Java. For these bench-
marks, Moth is within the performance range of JavaScript,
as implemented by Node.js, which means we reached our
performance goal.

3 What worked
The promise of SOMns, Truffle, and Graal were great per-
formance at reasonable engineering cost. Looking at the
numbers, this is not too far of the mark.

SOMns consists of about 33KLOCof Java and about 2KLOC
of Newspeak for its standard library. The biggest differ-
ence between Newspeak and Grace’s object models is that
Newspeak is based on classes, while Grace is based on object
literals. The Newspeak specification also defines object liter-
als, but no Newspeak implementation supports them, includ-
ing SOMns. We extended SOMns to include Newspeak’s ob-
ject literals, with the aim that they could be used for Grace’s
object literals. Object literal support added about 1.5KLOC
of Java.
Moth relies on a third-party parser (Kernan) for parsing

Grace code. As a consequence, Moth only needs to process
a JSON encoding of the Grace AST, Combined with other
smaller pieces of infrastructure, Moth adds about 5KLOC
of changes to SOMns, and is therefore a relatively small
addition.

Figure 1 shows the performance of Moth compared to Java
and Node.js. For the evaluation, we use the AreWe Fast Yet
benchmarks [Marr et al. 2016], which were designed for such
cross-language comparisons. For peak performance, we see
that we are 1.2x (min. 0.8x, max. 2.2x) slower than Node.js,
and about 2.3x (min. 0.9x, max. 4x) slower than Java.
To put these results into perspective, we also compared

Moth with the Higgs VM, a JavaScript VM for research on
JIT compilation [Chevalier-Boisvert and Feeley 2015, 2016].
Higgs consists of 21KLOC of D and 9KLOC of JavaScript.
While this is small and manageable for a custom VM, Higgs’s
performance on the AreWe Fast Yet benchmarks is not yet
in the range of V8 JavaScript.

4 What didn’t work
While we reached the main goal that we aimed for, there
are a number of issues that still require more engineering

and research. Sometimes the language specification does
not yet specify concrete semantics. One such example is
a fairly basic aspect: numbers. While it is said that Grace
must support at least a Number type with at least 51 bits of
precision, it also says that a full specification of numeric
types is yet to be completed. Unfortunately, this is in tension
with the choices made in SOMns, which has two distinct
numeric types. SOMns Doubles are 64bit IEEE 754 floating
point numbers, while SOMns Integers are arbitrary preci-
sion integers with an optimization for 64bit values. At the
moment, Moth adopts SOMns’ model, which leads to strange
effects. The most noticeable is perhaps the proliferation of
.asIntegermethod requests which turn a Grace number lit-
eral (encoded as a SOMns Double), into an SOMns Integer
to take advantage of integer specific library methods and
optimizations.
Other issues are simply an incomplete implementation.

For example, Grace’s for loop uses a range syntax from..to.
But in Moth, we typically rely on SOMns’ #to:do: method
of Integer. The main reason here is that some of these bits
simply have not yet been implemented. For most parts, we
rely on the SOMns standard library, which means that Moth
does not necessarily feel like a proper Grace would.

Other aspects require more research. For instance the sup-
port for Grace’s dialects is not yet completed. While basic
elements work, we do not usually use control flow constructs
such as if (.) then {} else {} from the dialect. Instead,
we request Newspeak’s #ifTrue:ifFalse: on a boolean
object. The main reason here is that dialects are not yet
optimized in the same way as SOMns builtin classes that
offer such control structures. For best performance, we there-
fore avoid things like if/then. At this point, we do not yet
have a good solution to optimize dialects reliably. The use of
simple heuristics would mean that the optimization would
apply only sometimes, but not always, which could lead to
unexpected results.

As mentioned in section 3, we rely on Kernan for parsing.
Our initial versions of Moth included a custom parser for
Grace. Unfortunately, this turned out to take much more
engineering time than we would have wished, and we gave
up on it for the moment.
Another issue that remains unsolved is the tension be-

tween breaking with SOMns’ implementation decisions, and
the appeal of being able to adopt SOMns’ maintenance changes
comparably effortlessly. An ideal Grace implementationwould
depart from SOMns and chose the simplest possible way to
realize Grace semantics. However, this would mean that we
have to change SOMns more extensively than we have done
so far. While this could lead to an overall smaller code base,
and a system that may be easier to understand, it would
also mean more effort for maintaining Moth. For instance,
keeping up to date with the Truffle library requires work.
Similarly, SOMns is actively developed and some of its fea-
tures such as support for various concurrency models, or the

2



Newspeak and Truffle: A Platform for Grace? Grace’18, November, 04, 2018, Boston, MA, USA

language server protocol for IDE support, may be relevant
in the future. Thus, ideally, any improvements in these parts
would be easily adoptable, which would be hampered by
more extensive customizations of the SOMns core.

5 Nothing is perfect
Moth is a reasonable approximation of Grace. Newspeak,
as expected, was a fairly good foundation for Grace. The
similarities outweigh the differences, and SOMns, with a
good understanding of how Truffle works in general, enables
changes to the language semantics in a more direct way than
a source translator or compiler would.

As seen in fig. 1, the peak performance ofMoth is 1.2x (min.
0.8x, max. 2.2x) slower than Node.js and therefore reaches
our set goals. With such a peak performance, we can evaluate
ideas with a good chance of generalizing to state-of-the-art
systems. Thus, we are confident that Moth will enable us to
pursue a wider range of research questions with Grace.

Acknowledgments
This work is supported by the Royal Society of New Zealand
Marsden Fund, and a James Cook Fellowship.

References
Andrew P. Black, Kim B. Bruce, and James Noble. 2010. Panel: design-

ing the next educational programming language. In SPLASH/OOPSLA
Companion.

Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William
Maddox, and Eliot Miranda. 2010. Modules as Objects in Newspeak. In
European Conference on Object-Oriented Programming (ECOOP). Lecture
Notes in Computer Science, Vol. 6183. 405–428. https://doi.org/10.1007/
978-3-642-14107-2_20

Craig Chambers, David Ungar, and Elgin Lee. 1989. An Efficient Imple-
mentation of SELF a Dynamically-Typed Object-Oriented Language
Based on Prototypes. In Proceedings on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA’89). ACM, 49–70. https:
//doi.org/10.1145/74878.74884

Maxime Chevalier-Boisvert and Marc Feeley. 2015. Simple and Effective
Type Check Removal through Lazy Basic Block Versioning. In 29th Euro-
pean Conference on Object-Oriented Programming (ECOOP 2015) (Leib-
niz International Proceedings in Informatics (LIPIcs)), Vol. 37. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 101–
123. https://doi.org/10.4230/LIPIcs.ECOOP.2015.101

Maxime Chevalier-Boisvert and Marc Feeley. 2016. Interprocedural Type
Specialization of JavaScript ProgramsWithout Type Analysis. In 30th Eu-
ropean Conference on Object-Oriented Programming (ECOOP 2016) (LIPIcs),
Vol. 56. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 7:1–7:24.
https://doi.org/10.4230/LIPIcs.ECOOP.2016.7

Grace Hopper. 1947. Log Book With Computer Bug. National Museum of
American History.

Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. 2016. Cross-
Language Compiler Benchmarking—Are We Fast Yet?. In Proceedings
of the 12th Symposium on Dynamic Languages (DLS’16). ACM, 120–131.
https://doi.org/10.1145/2989225.2989232

Stefan Marr, Chris Seaton, and Stéphane Ducasse. 2015. Zero-Overhead
Metaprogramming: Reflection andMetaobject Protocols Fast andwithout
Compromises. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’15). ACM,
545–554. https://doi.org/10.1145/2737924.2737963

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and
Matthias Felleisen. 2016. Is Sound Gradual Typing Dead?. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’16). ACM, 456–468. https://doi.org/10.
1145/2837614.2837630

Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß,
Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias
Grimmer. 2017. Practical Partial Evaluation for High-performance Dy-
namic Language Runtimes. In Proceedings of the 38th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI’17).
ACM, 662–676. https://doi.org/10.1145/3062341.3062381

ThomasWürthinger, ChristianWimmer, AndreasWöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario
Wolczko. 2013. One VM to Rule Them All. In Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software (Onward!’13). ACM, 187–204. https://doi.
org/10.1145/2509578.2509581

3

https://doi.org/10.1007/978-3-642-14107-2_20
https://doi.org/10.1007/978-3-642-14107-2_20
https://doi.org/10.1145/74878.74884
https://doi.org/10.1145/74878.74884
https://doi.org/10.4230/LIPIcs.ECOOP.2015.101
https://doi.org/10.4230/LIPIcs.ECOOP.2016.7
https://doi.org/10.1145/2989225.2989232
https://doi.org/10.1145/2737924.2737963
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581

	Abstract
	1 Why another Grace implementation?
	2 How do Newspeak and Truffle fit into the mix?
	3 What worked
	4 What didn't work
	5 Nothing is perfect
	Acknowledgments
	References

