
Fully-Reflective VMs for Ruling Software
Adaptation

Guido Chari∗, Diego Garbervetsky∗, Stefan Marr†
∗Departamento de Computación, FCEyN, UBA. ICC-CONICET, Argentina †Johannes Kepler University, Linz, Austria

Email: ∗{gchari, diegog}@dc.uba.ar, †stefan.marr@jku.at

I. INTRODUCTION

It has become common for software systems to require or
benefit from dynamic adaptation, i.e., to modify their behavior
while they are running. Among the existing approaches to this
problem, language-level solutions are appealing for scenarios
in which fine-grained adaptation is needed, i.e., when the
granularity of the modifications is that of individual objects, or
for small applications where an architectural solution based on
complex middleware is overkill. However, there is no consensus
on which of the existing language-level approaches to adopt. A
recent survey on self-adaptive systems asks [9]: Is it possible
to adopt a single paradigm providing all required abstractions
to implement adaptive systems?

To answer this question, Salvaneschi et al. evaluate contem-
porary reflective systems (RS),1 aspect-oriented programming
(AOP) and context-oriented programming (COP). Since the
authors identified strengths and weaknesses for all the ap-
proaches, their conclusions were not definite. We advocate
that a suitable solution must include abstractions to directly
mold the semantics of the whole system, considering both, the
application and the runtime level.

In contrast, paradigms like AOP and COP frequently fall into
indirect mechanisms of adaptation. The reasons are two-fold.
First they were not conceived as general solutions for unantic-
ipated software adaptation. Second, despite theoretically they
may approach adaptations directly, their main implementations
and tools (pointcut languages, layers, etc) biased the user to
think in terms of intercepting execution points and redirecting
their execution flow. On the other hand, most RSs do not reify2

all elements of a language and its implementation [2]. As a
consequence, the adaptations concerning these elements are
not expressible, or can be achieved only indirectly.

We believe that most of the approaches designed to handle
adaptation at the language level (RS, AOP, COP, and even
middlewares) were biased by the lack of adaptation capabilities
in mainstream VMs.

Based on the fact that reflection has already been identified
as a fundamental technique for software evolution [6], in this
paper we argue that a VM exposing its whole structure and
behavior to applications can provide a uniform solution for
adapting systems at the language level and at run time. A
fully-reflective execution environment (FREE) is a particular

1Salvaneschi et al. use the less specific term metaprogramming.
2To reify: model a concept as a first-class entity.

flavor of a VM exposing its whole structure and behavior to
applications [2]. We believe this kind of platforms deserves
more attention in the context of software adaptation.

II. UNANTICIPATED SOFTWARE ADAPTATION

A. Direct vs. Indirect Adaptations

Direct adaptation is the redefinition of program and VM
semantics restricted to the required operations and scope.
For instance, changing the layout (memory representation)
of specific objects.

Indirect adaptation is done by wrapping around (intercept)
the required semantics and redirect the execution flow.
For instance, intercepting the program before a method
activation and delegate it to new code.

To clarify the difference, Figure 1 depicts a very high-level
and simple example. In real applications, adaptations may
depend on a complex combination of operations and individual
instances. An indirect adaptation would intercept, potentially,
all the operations in the whole application and redirect them
to an ad-hoc method. This method, depending on the receiver
object, would determine whether the operation is allowed.

From our experience, in indirect adaptations: 1) The in-
terception of operations is usually implemented as an over-
approximation of the points in the program that need an adap-
tation. 2) Maintainability is hard because when the application
changes the interception points must be updated accordingly.
3) Debugging gets cumbersome because intercepted methods
could be polluted with instrumented code. 4) Composing
adaptations may lead to complex conditions at each interception
point jeopardizing performance. 5) If an operation is not
interceptable the adaption could not be performed. For instance,
language primitives might not be interceptable.

B. Reflective Systems

Reflection in programming languages is a mechanism for
programs to express computations about themselves, enabling
the observation (introspection) and/or modification (interces-
sion) of their structure and behavior [10] through a set of APIs.
When these APIs let clients modify or extend the semantics of
the language, they are called metaobject protocols (MOPs) [5].

Adaptation Approach: RS expose two ways to adapt
an application’s behavior, both fulfilling the direct adaptation
definition: 1) Modify reified objects, i.e., classes. 2) Attach
metaobjects to individual objects.

A B C

D E

A B C

D E

Standard operation
Operation + adaptation 1

Operation + adaptation 2
Operation + adaptation 1 and 2 Wrapper / Interceptor

If op = C then do 1 and 2
if op = A or D then do 1
if op = B then do 2
do op

Application Application + DA Application + IA

B C

D E

A

Fig. 1. Five operations and three combination of adaptations approached with both, direct adaptation (DA) and indirect adaptations (IA)

Adaptation Limitations: Even in advanced RSs, reifica-
tions [7], [8] cover only a limited subset of the VM entities.
As a consequence, they fail to handle directly adaptations
demanding changes to low-level entities.

C. AOP

Most AOP [4] implementations typically provide a domain
specific language to specify a set of points in the program (join
points) at which a feature orthogonal to the application logic
such as logging, caching, and persistence must be executed.

Adaptation Approach: Pointcut languages facilitates the
specification of fine-grained locations where the execution
could be redirected to ad-hoc user-defined behaviors.

Adaptation Limitations: Most AOP implementations
mostly provide means for adapting applications in an indirect
way. For adapting a single operation for a single instance it
intercepts all the occurrences and at run time tests whether
the actual subject (receiver) of the operation is the required
instance. This eventually leads to the problems that indirect
adaptations expose (cf. Section II-A).

D. COP

COP is a paradigm specially designed for applications with
behavioral variations depending on contextual information [3].

Adaptation Approach: COP languages support the follow-
ing features for adaptations: a) Means to specify behavioral
variations. b) Means to group variations into layers. c) Dynamic
activation/deactivation of layers based on context. d) Means to
explicitly and dynamically control the scope of layers.

Adaptation Limitations: Adaptations concerning execution
semantics or object’s structure can not be handled directly. As
such, COP is more suitable for dealing with anticipated rather
than unanticipated adaptation scenarios.

E. Summary

All the approaches have serious difficulties to support certain
adaptation scenarios. Specially, when the adaptations involve
VM internals such as object layouts, operational semantics,
etc. To handle these scenarios, at best they provide means for
indirect adaptations. Our conclusion is that a solution enabling
direct semantics adaptations involving both, entities of the
application and the VM itself, is still needed.

III. FULLY-REFLECTIVE VIRTUAL MACHINES

A FREE[2] is a particular kind of VM providing compre-
hensive reflective capabilities. Preliminary evidence suggests
that this kind of FREE can run efficiently [1]. By design, a
FREE enables to express adaptations involving VM entities
directly. In addition, a MOP-based FREE enables to describe
this semantics in a modular, composable and reusable way,
separated from the application’s logic. As a consequence, we
conjecture that a FREE is a suitable solution for approaching
adaptive scenarios at the language level and propose them as
a unique solution for software adaptation.

A. Sketching Language-level Approaches in a FREE

Reflective Systems: By definition, a FREE extends, and thus
subsumes, RSs because, ideally, a FREE reifies every entity.

Aspect-Oriented Programming: Joinpoints are precise loca-
tions of particular operations within the application. Since a
FREE can capture any operation and redefine its semantics
with language-level methods, it is possible to implement any
pointcut language in top of a FREE. On the other hand, one of
AOP’s most salient features is the decoupling of the crosscutting
concerns from the application’s logic. MOPs can be designed
for supporting the same property by promoting mechanisms
for composing metaobjects regarding cross-cutting concerns.

Context-Oriented Programming: The main mechanism to
support COP is the redefinition of method lookups and
activations so that they take into account the contextual
information and the activated layer. By definition, a FREE
reifies both concepts. On the other hand, layers just group
contextual-dependent behavioral variations. They can still be
expressed with any way of grouping methods or even by
composing metaobjects.

IV. CONCLUSIONS

From our perspective, contemporary reflective systems,
aspect-oriented programming, and context-oriented program-
ming present fundamental limitations for handling software
adaption in general. The main reason is that, with different
degrees of limitations, they do not enable to express direct
adaptations for a wide-range of entities. In particular, entities
concerning low-level aspects of the system. As a path to follow
for the software engineering community, we proposed the
incorporation of reflective capabilities to the runtime (VMs)
structures. We conjecture that these features are a more suitable
foundation for developing flexible software than other language-
level approaches.

REFERENCES

[1] G. Chari, D. Garbervetsky, and S. Marr. Building Efficient and Highly
Run-time Adaptable Virtual Machines. In Proceedings of the 12th
Symposium on Dynamic Languages, DLS’16. ACM, 2016. (to appear).

[2] G. Chari, D. Garbervetsky, S. Marr, and S. Ducasse. Towards fully
reflective environments. In 2015 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software
(Onward!), Onward! 2015, pages 240–253, New York, NY, USA, 2015.
ACM.

[3] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented program-
ming. Journal of Object Technology, 7(3), 2008.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. pages 220–242.
Springer, 1997.

[5] G. Kiczales and J. D. Rivieres. The Art of the Metaobject Protocol. MIT
Press, 1991.

[6] O. Nierstrasz, M. Denker, T. Gîrba, A. Lienhard, and D. Röthlisberger.
Change-enabled software systems. In Software-Intensive Systems and New
Computing Paradigms, pages 64–79. Springer-Verlag, Berlin, Heidelberg,
2008.

[7] B. Redmond and V. Cahill. Supporting unanticipated dynamic adaptation
of application behaviour. ECOOP ’02, pages 205–230. Springer, 2002.

[8] D. Röthlisberger, M. Denker, and E. Tanter. Unanticipated partial
behavioral reflection: Adapting applications at runtime. Comput. Lang.
Syst. Struct., 34(2-3):46–65, July 2008.

[9] G. Salvaneschi, C. Ghezzi, and M. Pradella. An analysis of language-level
support for self-adaptive software. TAAS, 8(2):7, 2013.

[10] B. C. Smith. Reflection and semantics in lisp. In Proceedings of the
11th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, POPL ’84, pages 23–35. ACM, 1984.

	I Introduction
	II Unanticipated Software Adaptation
	II-A Direct vs. Indirect Adaptations
	II-B Reflective Systems
	II-C AOP
	II-D COP
	II-E Summary

	III Fully-Reflective Virtual Machines
	III-A Sketching Language-level Approaches in a FREE

	IV Conclusions
	References

