
Efficient and Deterministic Record & Replay for Actor
Languages

Dominik Aumayr

Johannes Kepler University

Linz, Austria

dominik.aumayr@jku.at

Stefan Marr

University of Kent

Canterbury, United Kingdom

s.marr@kent.ac.uk

Clément Béra

Vrije Universiteit Brussel

Brussel, Belgium

clement.bera@vub.be

Elisa Gonzalez Boix

Vrije Universiteit Brussel

Brussel, Belgium

egonzale@vub.be

Hanspeter Mössenböck

Johannes Kepler University

Linz, Austria

hanspeter.moessenboeck@jku.at

ABSTRACT
With the ubiquity of parallel commodity hardware, developers

turn to high-level concurrency models such as the actor model to

lower the complexity of concurrent software. However, debugging

concurrent software is hard, especially for concurrencymodels with

a limited set of supporting tools. Such tools often deal only with

the underlying threads and locks, which obscures the view on e.g.

actors and messages and thereby introduces additional complexity.

To improve on this situation, we present a low-overhead record

& replay approach for actor languages. It allows one to debug

concurrency issues deterministically based on a previously recorded

trace. Our evaluation shows that the average run-time overhead for

tracing on benchmarks from the Savina suite is 10% (min. 0%, max.

20%). For Acme-Air, a modern web application, we see a maximum

increase of 1% in latency for HTTP requests and about 1.4MB/s

of trace data. These results are a first step towards deterministic

replay debugging of actor systems in production.

CCS CONCEPTS
• Computing methodologies → Concurrent programming
languages; • Software and its engineering → Software testing
and debugging;

KEYWORDS
Concurrency, Debugging, Determinism, Actors, Tracing, Replay

ACM Reference Format:
Dominik Aumayr, StefanMarr, Clément Béra, Elisa Gonzalez Boix, andHans-

peter Mössenböck. 2018. Efficient and Deterministic Record & Replay for

Actor Languages. In 15th International Conference on Managed Languages &
Runtimes (ManLang’18), September 12–14, 2018, Linz, Austria. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3237009.3237015

1 INTRODUCTION
Debugging concurrent systems is hard, because they can be non-

deterministic, and so can be the bugs one tries to fix. The main

ManLang’18, September 12–14, 2018, Linz, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in 15th International
Conference on Managed Languages & Runtimes (ManLang’18), September 12–14, 2018,
Linz, Austria, https://doi.org/10.1145/3237009.3237015.

challenge with these so called Heisenbugs [13], is that they may

manifest rarely and may disappear during debugging, which makes

them hard to reproduce and to fix.

McDowell and Helmbold [27] distinguish two broad categories of

debuggers for finding and fixing bugs: traditional breakpoint-based

debuggers and event-based debuggers. Event-based debuggers see

a program execution as a series of events and abstract away im-

plementation details. Commonly such event traces are used for

post-mortem analyses. However, they can also be used to repro-

duce program execution, which is known as record & replay. With

record & replay it is possible to repeat a recorded execution arbitrar-

ily often. Therefore, once a program execution with a manifested

bug was recorded, the bug can be reproduced reliably. This makes

such bugs easier to locate even though many executions may need

to be recorded to capture the bug.

Record & replay has been investigated in the past [8] for thread-

based programs or message-passing systems, at least since the

1980s [10]. However, debugging support for high-level concurrency

models such as the actor model has not yet received as much at-

tention [40]. As a result, there is a lack of appropriate tools, which

poses a maintenance challenge for complex systems. This is prob-

lematic because popular implementations of the actor model, such

as Akka
1
, Pony [9], Erlang [1], Elixir [38], Orleans [7], and Node.js

2
,

are used to build increasingly complex server applications.

Debugging support for the actor model so far focused either on

breakpoint-based debuggers with support for actor-specific inspec-

tion, stepping operations, breakpoints, asynchronous stack traces,

and visualizations [4, 25], or it focused on postmortem debugging,

e.g. Causeway [37], where a program’s execution is analyzed after

it crashed. While specialized debuggers provide us with the abil-

ity to inspect the execution of actor programs, they do not tackle

non-determinism. However, to the best of our knowledge, existing

record & replay approaches for actor-based systems focus either on

single event loop environments [2, 6] or have not yet considered

the performance requirements for server applications [35].

In this paper, we present an efficient approach for recording &

replaying concurrent actor-based systems. By tracing and reproduc-

ing the ordering of messages, recording of application data can be

limited to I/O operations. To minimize the run-time overhead, we

1Akka website, https://akka.io/
2Node.js website, https://nodejs.org/

1

https://doi.org/10.1145/3237009.3237015
https://doi.org/10.1145/3237009.3237015
https://akka.io/
https://nodejs.org/

ManLang’18, September 12–14, 2018, Linz, Austria D. Aumayr et al.

determine a small set of events needed to replay actor applications.

We prototype our approach on an implementation of communicat-

ing event loop actors [28] in SOMns. SOMns is an implementation

of Newspeak [5] on top of the Truffle framework and the Graal

just-in-time compiler [43]. Furthermore, we provide support for

recording additional detailed information during replay executions,

which can be used in the Kómpos debugger [25] for visualizations

or post-mortem analyses.

We evaluate our approach with SOMns. Using the Savina micro-

benchmark suite [17], we measure the tracing run-time overhead

and the trace growth rate for each benchmark. On the Acme-Air

web application [41], we measure the latency with and without

tracing, and the total trace size recorded.

The contributions of our approach are:

(1) Deterministic replay of actor applications using high-level

messaging abstractions,

(2) Capture of non-deterministic data to deal with external in-

puts,

(3) Scalability to a high number of actors and messages.

2 TOWARDS EFFICIENT DETERMINISTIC
REPLAY FOR ACTOR LANGUAGES

In deterministic programs, the result of an execution depends only

on its input. Thus, reproducing an execution is straightforward, pro-

vided the environment is the same. In practice, it is often necessary

to debug a program multiple times before the root cause of a bug is

found. This approach to debugging is called cyclic debugging [27].
As convenient as cyclic debugging is, it requires bugs to be repro-

ducible reliably. This makes it unsuitable for non-deterministic

programs, where the occurrence of a bug may depend on a rare

scheduling of messages.

As mentioned before, record & replay [8] enables determinis-

tic re-execution of a previously recorded program execution, and

thereby enables cyclic debugging also for non-deterministic pro-

grams. During the initial execution, such approaches record a pro-

gram trace, which is then used during replay to guide the execution

and reproduce, for instance, input from external sources and sched-

uling decisions, and thereby eliminate all non-determinism.

Record & replay for parallel and concurrent programs has been

studied before, but a majority of the previous work focused on

shared memory concurrency and MPI-like message passing [8].

Recent work focused either on single event loops or did not consider

performance [2, 6, 35]. Thus, none of the approaches that we are

aware of support efficient deterministic record & replay for modern

actor-based applications.

The remainder of this section considers the practical require-

ments for an efficient deterministic record & replay system. Fur-

thermore, it provides the necessary background on actor-based

concurrency and considers the limitations of record & replay sys-

tems.

2.1 Practical Requirements for
Record & Replay

Since modern actor systems such as Akka, Pony, Erlang, Elixir, Or-

leans, and Node.js are widely used for server applications, we aim

at making it practical to record the execution of such applications.

In such an environment, bugs might occur rarely and could be

triggered by specific user interactions only. We assume that devel-

opment happens on commodity hardware, so that the issues can be

reproduced and debugged on a developer’s laptop or workstation.

Based on this scenario, we consider two main concerns. First, the

recording should have minimal run-time overhead to minimize the

effect on possible Heisenbugs. Second, the amount of recorded data

should be small enough to fit either into memory or on a commodity

storage. For comparison, Barr et al. [2] reported a maximal tracing

overhead of 2% for their single event loop Node.js system and 4-8

seconds of benchmark execution. The produced trace data is less

than 9 MB. Burg et al. [6] report 1-3% run-time overhead and in

the worst case 65%. Their benchmarks execute for up to 26 seconds

and produce up to 700 KB of traces.

To make our system practical, we aim to achieve a similarly small

run-time overhead while tracing multiple event loops. However,

in parallel actor applications, we need to account for much higher

degrees of non-determinism. This means that the run-time overhead

is likely larger. Additionally, run-time overhead can scale with the

tracing workload, for instance, message intensive programs may

have a higher overhead than computationally intensive ones. Thus,

our goal is:

Goal 1
The run-time overhead of tracing for server applications

should be in the 0% to 3% range. Worst-case run-time overhead,
e.g. for message intensive programs, should be below 25%.

Since we aim at supporting long-running actor-based server

applications, the reported trace sizes do not directly compare to our

scenario. Furthermore, they are based on single event loops, which

havemuch lower event rates. Sincewe assume that some bugsmight

be induced by user interactions, we want to support executions of

multiple minutes and perhaps up to half an hour. Considering that

contemporary laptops have about 500 GB of storage, this would

mean an execution should produce no more than about 250 MB/s

of trace data. Therefore, our second goal is:

Goal 2
Recording should produce well below 250 MB/s of trace data.

2.2 Communicating Event Loop Actors
This section provides the background on actor-based concurrency

to detail the challenges of designing an efficient record & replay

mechanism for actor languages, and our contributions.

The actor model of concurrency was first proposed by Hewitt

et al. [15]. By now, diverse variations have emerged [11]. We focus

on the communicating event loops (CEL) variant pioneered by the

language E [28]. The CEL model exhibits all relevant characteristics

of actor models and combines event loops with high-level abstrac-

tions, like non-blocking promises, which represent a challenge for

deterministic replay, as we detail below. This class of actor models

has been later adopted by languages such as AmbientTalk [42] and

Newspeak [5], and also corresponds to the asynchronous program-

ming model of JavaScript and Node.js [39].

The general structure of CEL is shown in fig. 1. Each actor is

a container of objects isolated from the others, a mailbox, and an

2

Efficient and Deterministic Record & Replay for Actor Languages ManLang’18, September 12–14, 2018, Linz, Austria

Actor

Mailbox

Heap
Far-Reference

Near-Reference

Event Loop

Object

Message

Figure 1: Overview of CEL model. Each actor consists of a
thread of execution (an event loop), a heap with regular ob-
jects, and amailbox. An event loop processes incomingmes-
sages in a serial order from itsmailbox. An actor can directly
access and mutate objects it owns. All communication with
objects owned by other actors happens asynchronously via
far references.

event loop. The event loop processes messages from its mailbox one-

by-one in order of arrival.When amessage is processed, the receiver

object is identified and the method corresponding to the message is

invoked. The processing of one message by an actor defines a turn.
Since actors have isolated state andmessages are handled atomically

with respect to other messages, the non-determinism of the system

is restricted to the order in which messages are processed.

To maintain the state of each actor isolated from the other actors,

each actor only has direct access to the objects it owns. Communica-

tion with objects owned by other actors happens via far references.
Far references do not support synchronous method invocation nor

direct access to fields of objects. Instead, they can only receive

asynchronous message sends, which are forwarded to the mailbox

of the actor owning the object. Objects passed as arguments in

asynchronous message sends are parameter-passed either by far

reference, or by (deep) copy.

An asynchronous message send immediately returns a promise
(also know as a future). A promise is a placeholder object for the

result that is to be computed. Once the return value is computed, it

is accessible through the promise, which is then said to be resolved
with the value. The promise itself is an object, which can receive

asynchronous messages. Those messages are accumulated within

the promise and forwarded to the result value once it is available.

Other actor variants have different semantics for message re-

ception and whether they support (non-blocking) promises. Note,

however, that the queuing on non-blocking promises introduces

additional non-determinism compared to other actor variants. Thus,

they are the most challenging variant for deterministic replay.

2.3 Record & Replay for Actors
As mentioned before, record & replay has been investigated be-

fore [8]. Ronsse et al. [31] categorizes such approaches into content-

based and ordering-based replay based on what type of data is

recorded. We now describe their characteristics and applicability

to actor-based concurrency.

Content-based Replay. Content-based replay is based on record-

ing the results of all operations that observe non-determinism,

and returning the recorded results during replay. In the context of

shared memory concurrency, this means that all reads from mem-

ory accessed by other threads need to be captured. A representative

example of such an approach is BugNet [29].

In the context of actor-based concurrency, it is necessary to

record all kinds of events received by actors. To the best of our

knowledge, there exist only three approaches providing record &

replay for actor-based concurrency: Jardis [2], Dolos [6] and Acto-

verse [35]. They can be categorized as content-based replay. Ac-

toverse provides record & replay for Akka programs and records

messages exchanged by actors including message contents. Do-

los does record & replay for JavaScript applications running in a

browser, and Jardis for both the browser and Node.js. Both Dolos

and Jardis capture all non-deterministic interactions within a single

event loop, i.e. interactions with JavaScript/Node.js APIs.

Ordering-based replay. Ordering-based replay (also known as

control-based replay) focuses on the order in which non-deter-

ministic events occur. The key idea is that by reproducing the

control-flow of an execution, the data is implicitly reproduced as

well. This means that only data needed to reproduce the control-

flow has to be recorded, producing smaller traces in the process. An

early implementation of ordering-based replay is Instant replay [20],

which maintains version numbers for shared memory variables.

However, ordering-based replay does not work when a program

has non-deterministic inputs. For such programs, ordering-based

replay can be used for internal non-determinism, combined with

content-based replay for non-deterministic inputs.

In actor-based concurrency, since the non-determinism of the

system is restricted to the order in which messages are processed,

it is only necessary to reproduce the message processing order of

an actor. Ordering-based replay has not been explored for actor-

based concurrency, but there is work for message passing interface

(MPI) libraries. MPL* [18] is an ordering-based record & replay

debugger for MPI communication. MPL* records the sequence of

message origins (senders). This is enough information to reproduce

the ordering of messages for MPI communication, since messages

from the same source are race-free, i.e., they arrive in the order they

were sent in. Another ordering-based record & replay approach for

MPI is Reconstruction of Lamport Timestamps (ROLT) [32]. Like

MPL*, ROLT assumes messages from the same source being race-

free. It then uses Lamport clocks in all actors, and records when a

clock update is larger than one time step. These “jumps” are caused

by communication with actors that have a different clock value,

which synchronizes the Lamport clocks. In replay, the sending of

a message is delayed until all messages with smaller timestamps

have been sent.

2.4 Problem Statement
The existing record & replay approaches discussed above leave

three issues that need to be solved for actor-based concurrency.

Issue 1: Deterministic replay of high-level messaging abstractions.
Existing record & replay approaches typically only record the se-

quence of messages to reproduce the message order. MPL* for

example only records message senders, while Actoverse records

3

ManLang’18, September 12–14, 2018, Linz, Austria D. Aumayr et al.

Server ResourceWorker 2

resolve P2

Worker 1

resolve P1

request (P1)

request (P2)

P1 P2

send M1

send M2
deliver M2

deliver M1

Figure 2: Promise issue with theMPL* approach, message M2
is able to overtake message M1.

message contents as well. Unfortunately, message sender and con-

tent are not enough to reproduce the original message ordering in

the presence of high-level messaging abstractions such as promises.

Figure 2 gives an example of a scenario where replay using

only message sender information would not suffice for an actor-

based language, because it is not eliminating all non-determinism.

The Sever actor creates two promises P1 and P2 and then sends

a requestmessage with promise P1 as an argument to the Worker1
actor, and amessage M1 to promise P1. This is repeatedwith Worker2,
P2 and M2. In our example, Worker2 resolves P2 to Resource, caus-
ing the message M2 stored in P2 to be delivered to it. Later, Worker
1 also resolves its promise (P1) to the same Resource, and message

M1 is delivered. Despite being sent first, M1 is processed after M2, as
in our scenario the processing order depends on which promise is

resolved first. This makes the message ordering non-deterministic

when there is a race on which promise is resolved first.

In short, MPL* and Actorverse cannot reliably replay a program

similar to the scenario of fig. 2, as Server is the sender of both

messages, and replay cannot distinguish between M1 and M2.

Issue 2: Recording non-deterministic input. As stated before, pure

ordering-based replay cannot deal with non-determinism caused

by external inputs. Ordering-based replay variants devised for MPI

programs can deal with one source of non-determinism: messages

exchanged between processes. In particular, MPL* does not trace

non-deterministic contents of messages and as such, it does not

support replay of I/O operations.

On the other hand, content-based replay variants devised for

JavaScript’s event loop concurrency can deal with non-determinism

caused by external input. Jardis [2] is able to trace systems calls

and I/O. Dolos [6] captures all I/O, user input, and other sources of

non-determinism, such as timers for JavaScript programs. However,

both Jardis and Dolos only support a single event loop.

It is thus an open issue to support both types of non-determinism

for actor-based concurrency: message non-determinism (MPL*) and

non-deterministic interactions within a turn (Jardis, Dolos).

Issue 3: Scale. With content-based replay, the trace contains

enough information to make replay of individual actors in iso-

lation possible. This can be useful when the origin of a bug has

been narrowed down to a few actors, the behavior of which can

then be examined in detail without being distracted by the rest

of the system. However, the set of problematic actors is usually

unknown beforehand, rendering the approach often impractical, as

it does not offer deterministic replay of all the actors in a system.

We also expect high overhead for content-based replay both in

execution time and memory footprint since more events need to be

recorded, for example, messages exchanged between actors.

Ordering-based replay approaches proposed in the context of

message passing libraries (MPL) seem better suited for actors. To the

best of our knowledge, there is no existing performance comparison

between the two flavors, MPL* and MPL-ROLT. However, MPL-

ROLT suffers from scalability issues when applied to large-scale

systems, since it needs to update the clock of a message sender,

when the receiver’s clock is greater.

This back-propagation of clocks works in the context of MPI,

where mandatory ACK can be used. Also, the sender requires syn-

chronization of its mailbox to avoid clock updates from received

messages while waiting for the ACK response. Blocking the mail-

box while sending a message may be problematic given the larger

number of actors and messages found in actor programs.

Even though MPL replay approaches provide a starting point for

replaying actor-based concurrent programs, they assume a coarse-

grained granularity of processes and sparse use of message-based

communication. In contrast, actors are very lightweight and are

commonly used on a very fine-grained level, comparable to objects.

As such, a large number of actors can be created per VM. Not only

does this imply that the traffic generated by messages is higher

than in MPL programs, but also that tracing needs to be optimized

for events such as actor creation, messages, and I/O.

3 DETERMINISTIC REPLAY FOR ACTORS
The following sections present our solution to the non-determinism

of high-level messaging abstractions, input from external sources,

and the scale and granularity of actor systems.

The effects of high-levelmessaging abstractions, such as promises,

are replayed by recording and using additional information, which

is discussed in the remainder of this section.

To handle non-deterministic input, we propose a design that

distinguishes between synchronous and asynchronous inputs to

fit well with the actor model (section 4). Finally, to handle fine-

grained actor systems, we use a compact trace format that can be

recorded with a low run-time overhead and generates traces with

manageable sizes (section 5).

3.1 High-level Architecture
To achieve deterministic replay, we record the necessary infor-

mation to replicate the message execution order of an execution

precisely. To this end, we record actor creation, the message pro-

cessing order, and external non-determinism, i.e., input data.

As mentioned previously, there is a wide range of different actor

systems [11]. However, some actor systems use similar implementa-

tion strategies to gain efficiency. While they are not a precondition

for our approach, they can influence the efficiency of tracing. One

common optimization used by many actor runtimes is that actors

are scheduled on threads arbitrarily, possibly using a thread pool.

This means actors are not bound to a specific thread.

4

Efficient and Deterministic Record & Replay for Actor Languages ManLang’18, September 12–14, 2018, Linz, Austria

main actor

1st child 2nd child

 child Ids
 #1 253
 #2 728

 child Ids
 #1 634
 #2 842

1st child 2nd child

Figure 3: Actor family tree in replay. Actors know which Ids
to assign a new child actor.

Another common optimization is that message are processed in

batches to avoid making the actor mailbox a synchronization bot-

tleneck. Thus, a thread that executes the actor can take the actor’s

mailbox, replace it with an empty one, and then starts executing

the messages in the mailbox without having to synchronize again.

In section 5, we utilize this property to avoid redundancy in

subtraces that correspond to a batch of messages.

Tominimize the perturbation introduced by tracing, we decouple

the event recording from the writing to a file. While it is possible

to store data actor-local, doing so causes memory overhead to scale

with the number of actors, which is problematic for fine-grained

actor-based concurrency. Consequently, each thread that executes

actors uses thread-local buffers to store the recorded events. One

buffer records the generic events. The other buffer records external

data. When the buffers are full, they are handed to a thread that

writes them to a file (cf. section 6.2). The recording itself is also

optimized as discussed in section 5 and section 6.1. The resulting

trace file can then be used to replay the whole execution within a

new process.

3.2 Identifying Actors
For recorded events, we need to know on which actor they hap-

pened. For this purpose, each actor is assigned a unique integer Id

(ActorId). To correctly assign traced data to actors during replay,

our technique has to reproduce the assignment of actor Ids. To this

end, we consider the actors that an actor spawned to be its children.

We record actor creation in our trace, so that we can determine the

Ids of an actor’s children. Using the creation order, we can reassign

Ids correctly in replay.

The main actor, which is created when the program starts, is

always assigned the same Id. We can therefore identify it and use it

as a basis for identifying all its child actors. For each actor, we keep

track of how many children it created so far. When a new actor is

created during replay, we use the actor family tree shown in fig. 3

to look up the Id that has to be assigned to the new actor.

3.3 Messages & Promise Messages
For replaying normal messages, we have to record the Ids of their

senders just as MPL* does. However, as shown by fig. 2 and dis-

cussed in issue 1 of section 2.4, this is insufficient to replay high-

level messaging abstractions such as promises.We solve the issue by

Actor
Creation

Matches
Expected
Message?

Idle

Message ReceivedAppend to
Mailbox

Process
Message

More Expected
Messages?

Mailbox Contains
Exp. Message?

Actor
Done

Next
Expected
Message

No

yes

yes

yes

No

No

Figure 4: Behavior of actors during replay. To reproduce the
message order, actors check if the message type, sender, and
(for promisemessages) resolver of amessagematches the ex-
pected message. Only a matching message is executed, and
mismatches delayed until they match.

recording the actor that resolved the promise, i.e., caused a so-called

promise message to be delivered.

With this additional information we are able to distinguish mes-

sages that would otherwise appear identical, as for instance in a

MPL* replay. In the example of fig. 2, we now know which worker

is responsible for which message, and can therefore ensure that

they are processed in the same order as in the original execution.

3.4 Replay
When a program is started in replay mode, the interpreter loads

the trace file and starts executing the program. Instead of relying

on the normal actor implementation, it uses an implementation

specifically adapted to replay the trace exactly.

During replay, each actor holds a queue of recorded information

that represents the message order to reproduce. We call the head of

this queue the expected message. The expected message is either a

normal message or a promise message. To be processed, a received

message needs to match this type. For normal messages, the re-

ceived message also needs to have the same sender Id. Similarly, for

a promise message the received message needs to have the same

sender and resolver Ids as the expected message.

5

ManLang’18, September 12–14, 2018, Linz, Austria D. Aumayr et al.

Figure 4 shows how actors behave in replay executions. The way

an actor handles an incoming message depends on whether it is

currently idle or processing a message. An idle actor will check if

the received message has the sender and possibly resolver Id of the

expected message. If it does, the new message will be processed

right away. Otherwise, the message is appended to the mailbox.

When an actor is busy and receives a message, the message is simply

appended to the mailbox. When a busy actor finishes processing

a message, it will peek at the next expected message in the queue,

and then iterate through the mailbox in search for a matching

message. If amatch is found, themessage is processed, otherwise the

actor becomes idle and stops processing messages until a matching

message is received.

4 CAPTURING EXTERNAL
NON-DETERMINISM

Most programs interact with their environment, the effects of which

can be non-deterministic. For instance, in an HTTP server that re-

ceives requests and reacts to them, the request order determines the

program behavior. Another example for external non-determinism

are system calls to get the current time. Hence, capturing such

inputs is essential for deterministic replay.

We distinguish two ways non-determinsim is introduced by

such interactions: system calls and asynchronous data sources.

System calls are interactions with the environment that directly

return a result, such as getting the current system time, or checking

whether a file exists. Asynchronous data sources are more complex

and introduce non-determinism through an arbitrary number of

messages that are pushed as result of a non-deterministic event.

For example, an incoming HTTP request can cause a message to

be sent to an actor.

During recording, all interactions with the environment are

performed and the data needed to return results or send messages

is recorded. Each operation’s data is assigned an Id that is used to

reference it, and is written to a data file.

To enable tracing with minimal run-time overhead and storage

use, we leave the decision what and how to record to the imple-

menters of data sources. Hence, the tracing mechanism for external

data is general enough to be used for a wide range of use cases.

4.1 System Calls
The system call approach targets synchronous interactions with

non-deterministic results, which are recorded. All system calls are

expected to be implemented as basic operations in the interpreter

and are executed synchronously without sending a message. This

means that they happen as part of a turn.

Each system call needs to be carefully considered for tracing, to

prevent external data from leaking into the program uncontrolled.

Critical objects on which the system calls operate (e.g. a file handle)

need to be wrapped, and have to be completely opaque. Otherwise

the program can access external data that is not replayed. This

means that all operations that involve the wrapped object are either

system calls or only access fields of the wrapper.

As a result of the tracing, we get an ordered sequence of system

calls for each actor as well as the data that came from each of

these calls. By reproducing the order of events for an actor, we also

1 pu b l i c boo l ean p a t h E x i s t s (S t r i n g path) {

2 i f (REPLAY) {

3 r e t u r n g e t S y s t emc a l l B oo l e an () ;

4 }

5 boo lean r e s u l t = F i l e s . e x i s t s (pa th) ;

6 i f (TRACING) {

7 r e co rdSy s t emCa l lBoo l e an (r e s u l t) ;

8 }

9 r e t u r n r e s u l t ;

10 }

Figure 5: Simplified example for the implementation of a
path exists system call.

reproduce the order of performed system calls. Hence, the result of

the n-th system call by an actor is referenced by the n-th system

call event in the trace.

When an actor performs a system call in replay, the DataId of the
queues head is used to get the recorded data. The system call then

processes that data, instead of interacting with the environment,

and thus returns the same result as in the original execution.

The implementation of system calls is straightforward. Figure 5

is a simple example for a system call that checks whether a path

represented by a string exists in the file system. In the Java imple-

mentation of the system call, we insert two if clauses, the first one

(lines 2-4) is placed before the existence is actually checked. During

replay, it will get the result from the original execution and return

it immediately, bypassing the rest of the method. The existence

check is performed in line 6 and the result is stored in a variable

result. Finally, the second if clause (lines 6-8) is responsible for

recording the result when tracing is enabled. The infrastructure

adds a system call event to the trace and records the result in a

separate data trace.

Our design focuses on the reproduction of the returned result,

but it is general enough to allow reproduction of other effects a

system call may have on the program. For instance, a system call

that also resolves a promise in addition to returning a value. In this

case the recorded data has to contain both the result and the value

used for promise resolution.

4.2 Asynchronous Data Source
Input data that is not handled with system calls is generally con-

sidered to come from some asynchronous data source. In an actor

system, this means the external data source is typically represented

by an actor itself and data is propagated in the system by sending

messages or resolving promises. Thus, an actor wraps the data

source and makes it available to other actors via messages.

Through this wrapping, the deterministic replay can rely in part

on the mechanisms for handling messages and promises. However,

we need to augment them to record the data from the external

source when it becomes accessible to the application. These mes-

sages and promise messages that are sent as result of external events

are marked as external messages. For example, a message sent to

an actor that is triggered by an incoming HTTP request will be

marked as external and will contain the data of the request. In the

trace, these messages are marked as external as well and contain

the data Id to identify the recorded data during replay. They also

6

Efficient and Deterministic Record & Replay for Actor Languages ManLang’18, September 12–14, 2018, Linz, Austria

contain a marker to identify the type of event for a data source. This

is necessary because each data source may have multiple events of

different kinds. The data itself is stored in a file separate from the

traced events (cf. section 4.4 and section 5).

When an actor expects an external message during replay, it

will not wait for a message, but instead simulate the external data

source. Thus, it reads the recorded data associated with the sending

actor and the data Id in the trace. With this information, the replay

can resolve promises and send messages with the same arguments

as during recording.

4.3 Combining Asynchronous Data Sources
and System Calls to Record Used Data Only

Depending on the application that is to be recorded & replayed, it

can be beneficial to avoid recording all external data and instead

only record the data that influenced the application, i.e., was used

by it. To this end, we can combine our notion of asynchronous data

sources and system calls. We detail this idea using our example

of an HTTP server, where an application might only inspect the

headers sent by a client, but might not need the whole body of the

request. Figure 6 gives an overview of how the system is structured

to deal with such a scenario.

The HTTP server is considered an external data source and is

thus represented by its own actor. Application actors can register to

handle incoming HTTP requests on certain request paths, which is

a pattern common tomanyweb frameworks. The server handles the

incoming HTTP requests, and then delegates them to the registered

actor by sending a message.

A request itself can be modeled as an object, with which an ap-

plication can interact, for instance, to read the header or to respond

with a reply to the HTTP client.

To minimize the data that needs to be recorded, we model our

data source for the HTTP server so that it creates a HTTP request

object only with the minimal amount of data. The HTTP headers

and body are only going to be recorded when they are accessed.

Therefore, during recording, the initial incomingHTTP request only

leads to the recording of the kind of HTTP request that was made,

e.g., a get or post request, and the request path. This information is

needed to identify the callback handlers that an application actor

registered on the HTTP data source.

As detailed in section 4.2, triggering the callback handler is done

via an external message. Thus, the recorded message contains the

DataId, which references the kind of HTTP request made and its

path. During replay, when the HTTP server is created, its actor

has the same ActorId as in the recorded execution, and the same

callbacks are registered by the same actors in the same order. When

the application actor expects to receive the external message, it

looks up the data source (HTTP server) based on the sender’s

ActorId, and requests the simulated event. Thus, the data source

recreates the HTTP request object based on the DataId. When an

application accesses for instance the HTTP headers and body at a

later point, we handle these as system calls. Thus, during recording

the header data is written into the trace, and read from the trace

file during replay.

HttpActor

External
Data

#1=10101110
#2=00001111

….

Trace File

HTTP
Server

ApplicationAct
or

register callback

callback(HttpExchange)

record
(Path, Method)

DataId

record
ext. message

ext. message,
includes DataId,

EventType

(a) Tracing

HttpActor

External
Data

#1=10101110
#2=00001111

….

Trace File

HTTP
Server

ApplicationAct
or

register callback

callback(HttpExchange)
read

(Path, Method)

DataId

read
ext. message

Request Event
(DataId, EventType)

(b) Replay

Figure 6: Data flows of an HTTP server during tracing and
replay. Information about an incoming request is recorded
in the trace, this event is reproduced in replay on request of
the ApplicationActor.

4.4 Format for External Data
External data that is recorded for external events and system calls

is stored in a separate trace file using a binary format. The file

has a simple structure of consecutive entries with variable length.

Each entry starts with a 4-byte ActorId for the origin of the entry.

It is followed by the 4-byte DataId, which is referenced by the

trace entries for external messages and system calls. The length of

the payload is encoded also with 4-byte field. The combination of

ActorId and DataId allows it to identify a specific entry globally.

5 COMPACT TRACING
To encode trace events, we use a binary format that can be recorded

without introducing prohibitive run-time overhead. As mentioned

in section 3.1, we also need to account for actors being executed on

different threads over time. Both aspects are detailed below.

7

ManLang’18, September 12–14, 2018, Linz, Austria D. Aumayr et al.

07

TypeExId LenUnused

23456 1

E(1) Subtrace Start O Actor Id

(2) Actor Creation Child Id

(3) Message

(4) Promise Message

(5) System Call

E

E Sender Id Data IdET

E Sender Id Resolver Id Data IdET

E Data Id

Figure 7: Sketch of the encoding of trace entries with 4-
byte Ids. The EventType and DataId fields of messages and
promise messages are only needed when they are marked
as external in the header.

5.1 Subtraces
Since actors can be scheduled on different threads over time, and

we use thread-local buffers to record events, we need to keep track

of the actor that performed the events. To avoid having to record

the actor for each event, we start a new substrace when an actor

starts executing on a thread. Similarly, when a buffer becomes full,

a new subtrace is started.

To minimize run-time overhead, we use thread-local buffers

that are swapped only when they are full. This however means

that an actor could execute on one thread, and then on another,

and the buffer of the second thread could be written to the file

before the first one. Thus, we need to explicitly keep track of an

ordering of subtraces. For this reason, actors maintain a counter

for the subtraces. We record it as a 2-byte Id as part of the start of

subtraces. For well-behaved actor programs, the buffers are written

in regular intervals and 2-byte Ids provide sufficient safety even

with overflows to restore the original order.

5.2 Trace Format
Our compact binary trace format uses a one-byte header to encode

the details of a trace entry, and then encodes entry-specific fields.

The bits in the E event header encode the type of the entry, whether
a message is marked as external, and the number of bytes that are

used for Ids. Figure 7 visualizes the encoding.

By encoding the Ids with flexible length, we can reduce the trace

size significantly (cf. section 6.1 and section 7). Ideally, it means

that an Id smaller than 256 can be encoded in a single byte, one

smaller 65536 in two bytes, and so on.

As discussed in the previous section, we need to record the

start of subtraces, actor creation, messages, promise messages, and

system calls. Their specific fields are as follows:

(1) Subtrace Start. A subtrace start indicates the beginning of

each subtrace to associate all eventswithin it with the given ActorId.
O is the 2-byte ordering Id to restore the correct order of subtraces

before replaying them.

(2) Actor Creation. The actor creation entries correspond to when
a child actor is spawned. It includes the Id of the new actor (Child
Id) so that we can construct the parent-child tree of actors for

replay and reassign Ids to each actor.

(3) Message & (4) Promise Message. Message entries correspond

to the messages processed by the actor of a subtrace. The SenderId
identifies the actor that sent the message. Promise messages also

include the ResolverId to identify the actor that resolved the

promise.

External messages are marked by the Ex bit in the event header

and record EventType (ET in fig. 7) and DataId. The EventType
identifies the kind of external event, e.g., an HTTP request. It is

used to distinguish different kind of events from the same source.

The 4-byte DataId references the data for the external event.

(5) System Call. System call entries record the DataId to iden-

tify the data. Note that the order of trace entries is in most cases

sufficient to recreate a mapping during replay. Identifiers are only

introduced for cases where the ordering is insufficient.

6 IMPLEMENTATION
We implemented our record & replay solution for communicating

event-loop actors in SOMns. SOMns is written in Java as a self-

optimizing abstract syntax tree (AST) interpreter [44] using the

Truffle framework and Graal just-in-time compiler [43]. This allows

us to integrate record & replay directly into the language imple-

mentation. The tracing is added as nodes that specialize themselves

(i.e. optimize) based on the inputs they encounter. This means, the

tracing is compiled together with the application code and executes

as highly optimized native code, which reduces run-time overhead.

Our implementation optimizes recording of Ids and delegates the

writing of trace data to a background thread, which we detail below.

6.1 Optimized Recording of Ids
As seen in section 5.2, identifiers (Ids) are the main payload for trace

entries. Thus, efficient recording of Ids is crucial for performance.

To minimize the trace size, we decided to encode them in smaller

sizes if possible. However, in a naive implementation this would

increase the run-time overhead significantly, because for each Id we

would need to check how to encode it resulting in complex control

flow possibly limiting compiler optimizations.

With the use of self-optimizing nodes, we can avoid much of

the complexity of writing Ids. A program location that for instance

spawns an actor can thus specialize to the value range of Ids it has

seen. To minimize the overhead, a node specializes to the value

range that fits all previously seen Ids. Thus, if only an Id 34 has

been recorded, the node specializes to check that the Id matches the

1-byte Id range and to write it. If Ids 34 and 100,000 has been seen,

the node specializes to check that the Id can be stored in 3 bytes

and writes it. In case an Id is encountered that does not fit into the

given number of bytes, the node replaces itself with a version that

can write longer Ids. This will also invalidate the compiled code,

and eventually result in optimized code being compiled.

While this approach does not achieve the smallest possible trace

size, it reduces the run-time overhead. We evaluate the effectiveness

of our optimization and its effect on the performance in section 7.

8

Efficient and Deterministic Record & Replay for Actor Languages ManLang’18, September 12–14, 2018, Linz, Austria

6.2 Buffer Management
For our tracing of regular events, we use the following thread-

local buffer approach as described by Lengauer et al. [21]. By using

thread-local buffers, we avoid synchronization for every traced

event. Buffers that are not currently used by a thread are stored in

two queues, one containing full, and the other containing empty

buffers.When a thread’s trace buffer does not have enough space for

another entry, it is appended to the full queue, and the thread takes

its new buffer from the empty queue. The full queue is processed

by a background thread that writes the trace to a file.

For external data, we use separate buffers and a separate queue.

As external data can be of any size, we allocate buffers on demand

and discard them when they are no longer needed.

The writer thread that persists the trace also processes the queue

for external data. Once a buffer is written, it is added to the queue

of empty buffers for trace data or discarded for external data.

To avoid slowing down application threads with serialization

and conversion operations, they are done by the writer thread. The

application threads hand over the data without copying whenever

it is safe to do so. For instance, for our HTTP server data source,

this is possible because most data is represented as immutable

strings. Data sources that use complex objects use serializers that

are handed over to the writer thread together with the data. This

makes it possible to persist also complex data on the writer thread.

7 EVALUATION
This section evaluates the run-time performance and trace sizes of

our implementation in SOMns using the Savina benchmark suite

for actors [17], and Acme-Air as an example for a web application.

We also use the Are We Fast Yet benchmarks to provide a baseline

for the SOMns performance [24].

7.1 Methodology
As SOMns uses dynamic compilation, we need to account for the

VM’s warmup behavior [3]. The Savina and Are We Fast Yet bench-

marks run for 1000 iterations within the same VM process using

ReBench [23]. Since we are interested in the peak-performance of

an application with longer run times, we discount warmup. We do

this by inspecting the run-time plots for all benchmarks, which

indicates that the benchmarks stabilize after 100 iterations.

For Acme-Air, we use JMeter [14] to produce a predefined work-

load of HTTP requests. The workload was defined by the Node.js

version of Acme-Air. JMeter is configured to use two threads to

send a mix of ca. 42 million randomly generated requests based on

the predefined workload pattern. After inspecting the latency plots,

we discarded the first 250,000 requests to exclude warmup.

The Savina and Are We Fast Yet benchmarks were executed on

a machine with two quad-core Intel Xeons E5520, 2.26 GHz with 8

GB RAM, Ubuntu Linux with kernel 4.4, and Java 8.171. Acme-Air

was executed on a machine with a four-core Intel Core i7-4770HQ

CPU, 2.2 GHz, with 16 GB RAM, a 256 GB SSD, macOS High Sierra

(10.13.3), and Java 8.161. In both cases, we used Graal version 0.41.

In section 2.1, we defined the performance goals of a tracing

run-time overhead of less than 25% for message intensive programs,

i.e., microbenchmarks such as from the Savina benchmark suite.

Savina falls into this category as many of the benchmarks perform

little computation, for instance, in the counting benchmark 200,000

messages are sent to an actor who increments a counter. Further-

more, we aimed for a tracing mechanism that produces under 250

MB/s of trace data to be practical on today’s developer machines.

For larger systems, which are not dominated by message sends, we

aim for run-time overhead that is in the range of 0-3%.

To assess whether we reach these goals, wemeasure the overhead

of tracing on the benchmarks while restricting the actor system to

use a single thread. This is necessary to measure the actual tracing

overhead. Since some benchmarks are highly concurrent, running

on multiple threads can give misleading results. One issue is that

some of these benchmarks have very high contention and any

overhead in the sequential execution can result in a speedup in the

parallel execution, because it reduces contention and the number

of retries of failed attempts.

7.2 Baseline Performance of SOMns

To show that SOMns reaches a competitive baseline performance,

and is a solid foundation for our research, we first compared it to

Java, Node.js, and Scala.

The sequential performance of SOMns, as measured with the

Are We Fast Yet benchmarks, is shown in fig. 8. While SOMns is

not as fast as Java, it reaches the same level of performance as

Node.js, which is used in production environments. This indicates

that the sequential baseline performance of SOMns is competitive

with similar dynamic languages.

To ensure that SOMns’ actors are suitable for this work, we

compare its actor performance with other actor implementations,

based on the Savina benchmark suite.

Unfortunately, the benchmarks are designed for impure actor

systems, such as Akka, Jetlang, and Scalaz. This means, some of the

benchmarks rely on shared memory. Thus, we had to restrict our

experiments to a subset of 18 benchmarks from the total of 28, as

the other ones could not be ported to SOMns, because it does not

support shared memory between actors.

The results of our experiments with Savina benchmarks are

shown in fig. 9 and indicate that SOMns reaches the performance

of other widely used actor systems on the JVM. Hence, it is a suitable

foundation for this research.

7.3 Tracing Savina
Figure 10 shows the run-time overhead of tracing. It includes the

results for recording full Ids, i.e. all Ids are recorded with 4 bytes,

and the optimized version where the Ids are encoded with fewer

bytes if possible (cf. section 6.1). The average overhead for tracing

with full Ids is 9% (min. 0%, max. 18%). As seen in table 1, the bench-

marks produce up to 109MB/s of data. Applying our optimization

for recording small Ids, the average overhead for tracing is only

minimally higher with 10% (min. 0%, max. 20%). Furthermore, the

maximal data rate goes down to 59MB/s.

With these results, we fulfill our goal of having less than 25%

overhead for programs with high message rates, and to produce

less than 250MB/s of trace data.

As seen from table 1, effectiveness of using small Ids depends
on the benchmark. TrapezoidalApproximation for instance, has an

insignificant reduction in trace size. Other benchmarks, such as

9

ManLang’18, September 12–14, 2018, Linz, Austria D. Aumayr et al.

1

2

3

4

5

6

7

Ja
va

N
od

e.
js

SO
M
ns

R
un

ti
m
e
Fa
ct
or

no
rm

al
iz
ed

to
Ja
va

(lo
w
er

is
be
tt
er
)

Figure 8: Performance
comparison with other
languages. SOMns per-
forms similar to Node.js.

1 2 4 6 8
A
kk

a

Je
tl
an

g

Sc
al
az

SO
M
ns

A
kk

a

Je
tl
an

g

Sc
al
az

SO
M
ns

A
kk

a

Je
tl
an

g

Sc
al
az

SO
M
ns

A
kk

a

Je
tl
an

g

Sc
al
az

SO
M
ns

A
kk

a

Je
tl
an

g

Sc
al
az

SO
M
ns

0

1

2

3

4

5

Cores

R
un

ti
m
e
Fa
ct
or

no
rm

al
iz
ed

to
SO

M
ns

(lo
w
er

is
be
tt
er
)

Figure 9: Performance of Savina benchmarks in different actor languages for different
numbers of Cores.

Counting and RadixSort, have a near halved data-rate. Due to the

minimal performance impact, we consider using small Ids beneficial.

UnbalancedCobwebbedTree

TrapezoidalApproximation

ThreadRing

SleepingBarber

RadixSort

ProducerConsumerBoundedBuffer

PingPong

Philosophers

LogisticMapSeries

ForkJoinThroughput

ForkJoinActorCreation

Counting

ConcurrentSortedLinkedList

ConcurrentDictionary

CigaretteSmokers

Chameneos

BigContention

BankTransaction

1.
0

1.
2

1.
4

Runtime Factor, normalized to
untraced SOMns (lower is better)

Small Ids

Full Ids

Figure 10: Performance of traced executions of the Savina
benchmarks using a single thread. Results are normalized
to the untraced execution.

7.4 Tracing Acme-Air
Acme-Air is a benchmark representing a server application imple-

mented with micro-services [41]. It models the booking system of

a fictional Airline. Acme-Air is available on GitHub
3
for Java and

Node.js. The JavaScript version of Acme-Air served as the basis for

3Acme-Air repository, https://github.com/acmeair/

Harmonic Mean MB/s

Small Ids Full Ids

BankTransaction 19.11 23.87

BigContention 10.38 12.14

Chameneos 52.02 53.46

CigaretteSmokers 30.72 31.50

ConcurrentDictionary 0.02 0.03

ConcurrentSortedLinkedList 0.00 4.38

Counting 58.84 108.58

ForkJoinActorCreation 18.56 34.23

ForkJoinThroughput 7.96 25.44

LogisticMapSeries 30.64 49.00

Philosophers 44.52 71.26

PingPong 39.22 68.18

ProducerConsumerBoundedBuffer 5.29 0.02

RadixSort 36.29 66.44

SleepingBarber 55.88 70.42

ThreadRing 50.00 76.91

TrapezoidalApproximation 3.17 3.21

UnbalancedCobwebbedTree 19.60 20.02

Table 1: Trace production per second over 1000 benchmark
iterations.

our SOMns port. We stayed true to the original design, in which

a single event loop is used to process requests. Instead of using a

stand-alone database, we used an embedded Derby
4
database. The

database was reset and loaded with data before each benchmark to

factor out its potential influence on the results.

JMeter measures the latency for each request it makes. Since the

highest resolution is 1ms, some results are rounded to 0ms. The

predefined workload uses different frequencies for the different

possible requests seen in fig. 11. For instance, Query Flight is the

most common one representing 46.73% of all requests.

4Apache Derby, https://db.apache.org/derby/index.html

10

https://github.com/acmeair/
https://db.apache.org/derby/index.html

Efficient and Deterministic Record & Replay for Actor Languages ManLang’18, September 12–14, 2018, Linz, Austria

BookFlight

Cancel Booking

List Bookings

Login

Query Flight

Update Customer

View Profile

Logout

0.
97

0.
98

0.
99

1.
00

1.
01

Latency Factor
normalized to untraced (lower is better)

Figure 11: Latency of different request types in traced execu-
tions, normalized to untraced executions.

Figure 11 shows the effect of tracing on the latency of different

requests. Tracing small Ids results in a maximum overhead of 1%

(geomean. -1%, min. -3%). We consider average negative over-

head, i.e. speedup, an artifact of dynamic compilation. The compiler

heuristics can trigger slightly differently, which leads to differences

in the applied optimizations, native code layout, and caching effects.

The trace size for a benchmark execution is 993MB in total, with

an observed data-rate of 1.4MB/s. External data is responsible for

the majority of the trace size (88%, 872MB), while tracing of inter-

nal events accounts for 121MB. Variations in trace size between

different benchmark executions were negligible, i.e. below 1MB.

The Acme-Air results suggest that real-word applications tend to

have lower data-rates and overhead than most Savina benchmarks.

The maximal overhead of 1% suggests, however, that tracing larger

application has likely minimal impact and is thus practical, meets

our goals, and is comparable to systems that are not optimized for

the fine granularity and high message rate of actors.

8 RELATEDWORK
This section discusses related work in addition to the record &

replay approaches analyzed in section 2.3. We compare our solution

to work that employs similar tracing techniques: record & refine,

back-in-time debugging, shared memory, and profiling.

8.1 Record and Refinement
As explained in section 2, record & replay approaches record a pro-

gram trace, which is then used during replay to guide execution and

reproduce non-deterministic behavior (such as input from external

sources and scheduling of messages) in a deterministic way. Such

deterministic replay can then also provide access to more detailed

information after the original execution finished. Felgentreff et al.

[12] define this process as record and refine.
Record & refine enables low-overhead postmortem debugging.

Thus, during recording, only the minimum necessary data to re-

produce the desired parts of a program execution is recorded, i.e.,

to avoid non-determinism during replay. All additional data, for

instance to aid debugging, can be obtained during replay execu-

tion. We apply the same idea to SOMns. During recording, only the

minimal amount of information is retained and during replay, all

features of the Kómpos debugger are supported.

8.2 Back-in-Time Debugging
Unlike record & replay, back-in-time debugging takes snapshots of

the program state at certain intervals, and they offer time travel by

replaying execution from the checkpoint before the target time.

Jardis. Jardis [2] provides both time-travel debugging and replay

functionality for JavaScripts event loop concurrency. It combines

tracing of I/O and system calls with regular heap snapshots of the

event loop. It keeps snapshots of the last few seconds, allowing

Jardis to go back as far as the oldest snapshot, and discard trace

data from before that point. While this keeps the size of traces and

snapshots small, it limits debugging to the last seconds before a bug

occurs. This may be a problem as the distance between root cause

and actual issue is typically large in concurrent programs [30].

Jardis reports a run-time overhead of ⩽2% for compressed trace

sizes of below 9MB for 2-4 second runs. For Acme-Air, our approach

has a data rate (1.4MB/s) lower than the one of Jardis. As such, our

impact on the performance of the benchmark is competitive.

Actoverse. Actoverse [35] also provides both time-travel debug-

ging and record & replay for Akka actors. Unlike Jardis or our solu-

tion, Actoverse is implemented as a library and uses annotations to

mark fields to be recorded. A snapshot of those fields is saved when

sending and after processing messages. The order of messages and

snapshots is determined with Lamport clocks to avoid a global

clock. While performance is not reported, the memory usage is

indicated with about 5 MB for 10,000 messages. Our ordering-based

approach requires only about 2-15 byte per message.

CauDEr. CauDEr [19] is a reversible debugger for Erlang. It is
able to undo actions and step backwards in the execution by relying

on reversible execution semantics. CauDEr currently only addresses

a subset of Erlang and focuses on the semantic aspects of reversible

execution for debugging. Therefore, it can help in correctness con-

siderations, but does not focus on enabling the debugging of larger

systems as our work does.

8.3 Shared Memory
There is a lot of work on record & replay in the context of shared

memory. Generally, shared memory record & replay reproduces

the order of synchronization operations and accesses to shared

memory. The used techniques are very diverse, as is their impacts

on run-time performance, which can range from negligible over-

head [22, 26] to 35x overhead [20]. Castor [26] can use transactional

memory to improve its performance. iReplayer [22] records explicit

synchronization, regularly creates snapshots of program state, and

provides in-situ replay, i.e. within the same process. LEAP [16] uses

static analysis to determine what is shared between threads. Un-

fortunately, static approaches can introduce synchronization on

all operations with a shared field. For the actor model, this syn-

chronization corresponds to one global lock for all mailboxes. In

the actor model synchronization on mailboxes and promises are

essential. They correspond roughly to the tracing in SOMns. Hence,

shared-memory approaches conceptually have to record at least

as many events as our actor tracing. However, the actor model

11

ManLang’18, September 12–14, 2018, Linz, Austria D. Aumayr et al.

ensures that there are no races on shared memory, which would

need to be traced. For pure actor models as in SOMns, shared mem-

ory approaches are therefor likely having the same or additional

overhead. For impure actor models, it seems beneficial to find ways

to combine actor and shared memory record & replay techniques.

8.4 Profiling
We now discuss related work in the context of profiling for actor-

based concurrency.

Profiling of Akka Actors. Rosà et al. [33, 34] profile the utilization
and communication of Akka actors based on platform-independent

and portable metrics. An application collects profiling information

in memory. On termination, it generates a trace file that can be

analyzed to determine performance bottlenecks. It tracks various

details including message counts and executed bytecodes. To at-

tribute this information precisely, it maintains a shadow stack. In

contrast to this, SOMns records the ordering of messages, their pro-

cessing, and any external input. Since offline analysis is not a direct

goal, SOMns does not need a shadow stack, but could provide such

information during replay execution. For replaying, however, we

need to record the events instead of just counting them. Since Rosà

et al. [33] aimed for platform-independent and portable metrics,

run-time performance was not a major concern. They observed a

run-time overhead of about 1.56x (min. 0.93x, max. 2.08x).
5
How-

ever, these numbers include instrumentation overhead and do not

directly compare to the overhead of long-running applications,

which is probably much lower.

Large-scale Tracing. Lightbend Telemetry
6
offers a commercial

tool for capturing metrics of Akka systems. The provided actor

metrics are based on counters, rates, and times. For example, it

records mailbox sizes, the processing rate of messages, and how

much time messages spent in the mailbox. The run-time overhead

can be finely adjusted by selecting the elements that are to be traced,

and possibly a sampling granularity. This seems to be a standard

approach for such systems and is also used by tracing systems based

on the OpenTracing standard
7
or Google’s Dapper [36]. However,

since we want to eliminate all non-determinism, doing selective or

sample-based tracing is not an option.

9 CONCLUSION AND FUTUREWORK
To better handle the complexity of concurrency and avoid dealing

with threads and locks, developers embrace high-level concurrency

models such as actors. Unfortunately, actor systems usually have a

limited number of supporting tools, making them hard to debug. In

this paper, we presented an efficient record & replay approach for

actor languages letting the programmer debug non-deterministic

concurrency issues by replaying a recorded trace.

Our approach is able to replay high-level messaging abstractions

such as promises by recording extra information. Non-deterministic

inputs are recorded and replayed deterministically. In addition, our

approach scales to a high number of actors and exchangedmessages

through its low execution time overhead and its compact trace.

5
Results unpublished, from private communication.

6Telemetry, Lightbend, access date: 2018-05-03, https://developer.lightbend.com/docs/

cinnamon/2.5.x/instrumentations/akka/akka.html

7OpenTracing.io, access date: 2018-05-03, http://opentracing.io/

We evaluated the performance of our approach with the Savina

benchmark suite, the average tracing run-time overhead is 10%

(min. 0%, max. 20%). In the case of the modern web application

Acme-Air, our approach showed a maximum increase in latency of

1% and about 1.4MB/s of trace data.

Applicability to Actor Models. We argue that our approach is

general enough to be applied to all forms of message processing

(continuous/blocking and consecutive/interleaved). The main rea-

son is that we record the order in which messages are processed.

Thus, our approach is independent of any variation in selecting

which message may be executed next and all selections, blocking,

or interleaving already happened. Hence, all those mechanisms

determining the message order in the original execution do not

have to be reproduced, as we already have the final ordering, which

is replayed in a re-execution. A requirement for our approach is,

however, that actors are isolated and shared memory is not allowed

because we do not track races on shared memory.

Future work: Long Running Applications. Although our approach

is able to scale up in term of the number of actors and exchanged

messages, it is currently not suitable for applications that run for

extended periods of time. The trace recorded by our approach keeps

growing as the program runs, at some point the trace will become

too large for the disk. Besides the problem of growing traces, there

is also the practical issue of replaying such a program. Replay of a

program that has been running for such a long period of time will

take a similar (or higher) amount of time.

One solution is to create snapshots of the programs state at

regular intervals. Each time a snapshot is created, previous trace

data can be discarded. Replay can then start at the last snapshot

before a failure, and allows developers to investigate the cause. To

minimize traces further, we could apply simple compression too.

Future work: Replay Performance. Currently, our replay imple-

mentation parses the entire trace on startup. This comes with a high

memory overhead, and causes scalability issues with the employed

data structures. Replay scalability can be improved by parsing the

trace on-the-go. By dividing the parsing effort across the replay

execution, startup time and memory overhead can be reduced.

Future work: Partial Replay. Partial replay of an execution can

enable debugging and testing techniques, such as regression tests

and exploration of different interleavings. The biggest challenge for

partial replay is external non-determinism when switching from

replay to free execution.

ACKNOWLEDGMENTS
This research is funded by a collaboration grant of the Austrian

Science Fund (FWF) and the Research Foundation Flanders (FWO

Belgium) as project I2491-N31 and G004816N, respectively.

REFERENCES
[1] Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams. 1996. Con-

current Programming in Erlang (2 ed.). Prentice Hall PTR.

[2] Earl T Barr, Mark Marron, Ed Maurer, Dan Moseley, and Gaurav Seth. 2016.

Time-travel debugging for JavaScript/Node.js. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2016). ACM, 1003–1007. https://doi.org/10.1145/2950290.2983933

12

https://developer.lightbend.com/docs/cinnamon/2.5.x/instrumentations/akka/akka.html
https://developer.lightbend.com/docs/cinnamon/2.5.x/instrumentations/akka/akka.html
http://opentracing.io/
https://doi.org/10.1145/2950290.2983933

Efficient and Deterministic Record & Replay for Actor Languages ManLang’18, September 12–14, 2018, Linz, Austria

[3] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and

Laurence Tratt. 2017. Virtual Machine Warmup Blows Hot and Cold. Proc. ACM
Program. Lang. 1, OOPSLA, Article 52 (Oct. 2017), 27 pages. https://doi.org/10.

1145/3133876

[4] Elisa Gonzalez Boix, Carlos Noguera, Tom Van Cutsem, Wolfgang De Meuter, and

Theo D’Hondt. 2011. Reme-d: A reflective epidemic message-oriented debugger

for ambient-oriented applications. In Proceedings of the 2011 ACM Symposium on
Applied Computing. ACM, 1275–1281.

[5] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox,

and Eliot Miranda. 2010. Modules as Objects in Newspeak. In ECOOP 2010 –
Object-Oriented Programming, Theo D’Hondt (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 405–428.

[6] Brian Burg, Richard Bailey, Andrew J. Ko, and Michael D. Ernst. 2013. Interactive

Record/Replay for Web Application Debugging. In Proceedings of the 26th Annual
ACM Symposium on User Interface Software and Technology (UIST’13). ACM,

473–484. https://doi.org/10.1145/2501988.2502050

[7] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and Jorgen

Thelin. 2011. Orleans: Cloud Computing for Everyone. In Proceedings of the 2Nd
ACM Symposium on Cloud Computing (SOCC ’11). ACM, New York, NY, USA,

Article 16, 14 pages. https://doi.org/10.1145/2038916.2038932

[8] Yunji Chen, Shijin Zhang, Qi Guo, Ling Li, Ruiyang Wu, and Tianshi Chen. 2015.

Deterministic Replay: A Survey. ACM Comput. Surv. 48, 2, Article 17 (Sept. 2015),
47 pages. https://doi.org/10.1145/2790077

[9] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and AndyMcNeil. 2015.

Deny Capabilities for Safe, Fast Actors. In Proceedings of the 5th International
Workshop on Programming Based on Actors, Agents, and Decentralized Control
(AGERE! 2015). ACM, New York, NY, USA, 1–12. https://doi.org/10.1145/2824815.

2824816

[10] Ronald Curtis and Larry D. Wittie. 1982. BUGNET: A debugging system for paral-

lel programming environments. In Proceedings of the 3rd International Conference
on Distributed Computing Systems (ICDCS’82). IEEE Computer Society, 394–400.

[11] Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 2016. 43 Years of

Actors: A Taxonomy of Actor Models and Their Key Properties. In Proceedings
of the 6th International Workshop on Programming Based on Actors, Agents, and
Decentralized Control (AGERE 2016). ACM, New York, NY, USA, 31–40. https:

//doi.org/10.1145/3001886.3001890

[12] Tim Felgentreff, Michael Perscheid, and Robert Hirschfeld. 2017. Implementing

record and refinement for debugging timing-dependent communication. Science
of Computer Programming 134 (2017), 4–18. https://doi.org/10.1016/j.scico.2015.

11.006

[13] Jim Gray. 1986. Why do computers stop and what can be done about it?. In

Symposium on reliability in distributed software and database systems. Los Angeles,
CA, USA, 3–12.

[14] Emily H Halili. 2008. Apache JMeter: A practical beginner’s guide to automated
testing and performance measurement for your websites. Packt Publishing Ltd.

[15] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A Universal Modular

ACTOR Formalism for Artificial Intelligence. In IJCAI’73: Proceedings of the 3rd
International Joint Conference on Artificial Intelligence. Morgan Kaufmann.

[16] Jeff Huang, Peng Liu, and Charles Zhang. 2010. LEAP: Lightweight Deter-

ministic Multi-processor Replay of Concurrent Java Programs. In Proceedings
of the Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE ’10). ACM, New York, NY, USA, 207–216. https:

//doi.org/10.1145/1882291.1882323

[17] Shams M. Imam and Vivek Sarkar. 2014. Savina - An Actor Benchmark Suite:

Enabling Empirical Evaluation of Actor Libraries. In Proceedings of the 4th In-
ternational Workshop on Programming Based on Actors Agents & Decentralized
Control (AGERE!’14). ACM, 67–80. https://doi.org/10.1145/2687357.2687368

[18] Jacques Chassin de Kergommeaux, Michiel Ronsse, and Koenraad De Bosschere.

1999. MPL*: Efficient Record/Play of Nondeterministic Features of Message

Passing Libraries. In Proceedings of the 6th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message Passing
Interface. Springer, London, UK, 141–148.

[19] Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. 2018. CauDEr:

A Causal-Consistent Reversible Debugger for Erlang. In Functional and Logic
Programming (FLOPS’18), Vol. 10818. Springer, 247–263. https://doi.org/10.1007/

978-3-319-90686-7_16

[20] Thomas J LeBlanc and John M Mellor-Crummey. 1987. Debugging parallel

programs with instant replay. IEEE Trans. Comput. 4 (1987), 471–482.
[21] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2015. Accurate and

Efficient Object Tracing for Java Applications. In Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering (ICPE ’15). ACM, New York,

NY, USA, 51–62. https://doi.org/10.1145/2668930.2688037

[22] Hongyu Liu, Sam Silvestro, Wei Wang, Chen Tian, and Tongping Liu. 2018.

iReplayer: In-situ and Identical Record-and-replay forMultithreaded Applications.

In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2018). ACM, New York, NY, USA, 344–358.

https://doi.org/10.1145/3192366.3192380

[23] Stefan Marr. 2018. ReBench: Execute and Document Benchmarks Reproducibly.

(August 2018). https://doi.org/10.5281/zenodo.1311762 Version 1.0.

[24] Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. 2016. Cross-Language

Compiler Benchmarking—Are We Fast Yet?. In Proceedings of the 12th ACM
SIGPLAN International Symposium on Dynamic Languages (DLS’16), Vol. 52. ACM,

120–131. https://doi.org/10.1145/2989225.2989232

[25] Stefan Marr, Carmen Torres Lopez, Dominik Aumayr, Elisa Gonzalez Boix, and

Hanspeter Mössenböck. 2017. A Concurrency-Agnostic Protocol for Multi-

Paradigm Concurrent Debugging Tools. In Proceedings of the 13th ACM SIG-
PLAN International Symposium on Dynamic Languages (DLS’17). ACM. https:

//doi.org/10.1145/3133841.3133842

[26] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David Mazieres, and Mendel

Rosenblum. 2017. Towards Practical Default-On Multi-Core Record/Replay. In

Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’17). ACM, 693–708.

https://doi.org/10.1145/3037697.3037751

[27] Charles E. McDowell and David P. Helmbold. 1989. Debugging Concurrent

Programs. ACM Comput. Surv. 21, 4 (Dec. 1989), 593–622. https://doi.org/10.

1145/76894.76897

[28] Mark S. Miller, E. Dean Tribble, and Jonathan Shapiro. 2005. Concurrency Among

Strangers: Programming in E As Plan Coordination. In Proceedings of the 1st
International Conference on Trustworthy Global Computing (TGC’05). Springer.

[29] Satish Narayanasamy, Gilles Pokam, and Brad Calder. 2005. BugNet: Continuously

Recording Program Execution for Deterministic Replay Debugging. SIGARCH
Comput. Archit. News 33, 2 (May 2005), 284–295. https://doi.org/10.1145/1080695.

1069994

[30] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld.

2016. Studying the advancement in debugging practice of professional software

developers. Software Quality Journal 25, 1 (2016), 83–110. http://dblp.uni-trier.

de/db/journals/sqj/sqj25.html#PerscheidSTH17

[31] Michiel Ronsse, Koen De Bosschere, and Jacques Chassin de Kergommeaux.

2000. Execution replay and debugging. In Proceedings of the Fourth International
Workshop on Automated Debugging (AADebug).

[32] M. A. Ronsse and D. A. Kranzlmuller. 1998. RoltMP-replay of Lamport timestamps

for message passing systems. In Parallel and Distributed Processing, 1998. PDP ’98.
Proceedings of the Sixth Euromicro Workshop on. 87–93. https://doi.org/10.1109/

EMPDP.1998.647184

[33] Andrea Rosà, Lydia Y. Chen, and Walter Binder. 2016. Actor Profiling in Virtual

Execution Environments. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences (GPCE’16). ACM,

36–46. https://doi.org/10.1145/2993236.2993241

[34] Andrea Rosà, Lydia Y. Chen, and Walter Binder. 2016. Profiling Actor Utilization

and Communication in Akka. In Proceedings of the 15th International Workshop
on Erlang (Erlang 2016). ACM, 24–32. https://doi.org/10.1145/2975969.2975972

[35] Kazuhiro Shibanai and Takuo Watanabe. 2017. Actoverse: a reversible debugger

for actors. In Proceedings of the 7th ACM SIGPLAN International Workshop on
Programming Based on Actors, Agents, and Decentralized Control. ACM, 50–57.

[36] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,

Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper, a
Large-Scale Distributed Systems Tracing Infrastructure. Technical report. Technical
report, Google, Inc. https://research.google.com/archive/papers/dapper-2010-1.

pdf

[37] Terry Stanley, Tyler Close, and Mark S Miller. 2009. Causeway: A message-

oriented distributed debugger. Technical Report of HP, HPL-2009-78 (2009).
[38] Dave Thomas. 2014. Programming Elixir: Functional , Concurrent , Pragmatic ,

Fun (1st ed.). Pragmatic Bookshelf.

[39] Stefan Tilkov and Steve Vinoski. 2010. Node.js: Using JavaScript to Build High-

Performance Network Programs. IEEE Internet Computing 14, 6 (Nov 2010), 80–83.
https://doi.org/10.1109/MIC.2010.145

[40] Carmen Torres Lopez, Stefan Marr, Hanspeter Mössenböck, and Elisa Gonza-

lez Boix. 2016. Towards Advanced Debugging Support for Actor Languages:

Studying Concurrency Bugs in Actor-based Programs. (30 Oct. 2016), 5 pages.

[41] Takanori Ueda, TakuyaNakaike, andMoriyoshi Ohara. 2016. Workload Character-

ization forMicroservices. In 2016 IEEE International Symposium onWorkload Char-
acterization (IISWC’16). IEEE, 85–94. https://doi.org/10.1109/IISWC.2016.7581269

[42] Tom Van Cutsem. 2012. AmbientTalk: Modern Actors for Modern Networks. In

Proceedings of the 14th Workshop on Formal Techniques for Java-like Programs
(FTfJP ’12). ACM, 2–2. https://doi.org/10.1145/2318202.2318204

[43] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas

Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. 2017.

Practical Partial Evaluation for High-performance Dynamic Language Runtimes.

In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’17). ACM, 662–676. https://doi.org/10.1145/

3062341.3062381

[44] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon,

and Christian Wimmer. 2012. Self-Optimizing AST Interpreters. In Proceedings
of the 8th Dynamic Languages Symposium (DLS’12). 73–82. https://doi.org/10.

1145/2384577.2384587

13

https://doi.org/10.1145/3133876
https://doi.org/10.1145/3133876
https://doi.org/10.1145/2501988.2502050
https://doi.org/10.1145/2038916.2038932
https://doi.org/10.1145/2790077
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/3001886.3001890
https://doi.org/10.1145/3001886.3001890
https://doi.org/10.1016/j.scico.2015.11.006
https://doi.org/10.1016/j.scico.2015.11.006
https://doi.org/10.1145/1882291.1882323
https://doi.org/10.1145/1882291.1882323
https://doi.org/10.1145/2687357.2687368
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1145/2668930.2688037
https://doi.org/10.1145/3192366.3192380
https://doi.org/10.5281/zenodo.1311762
https://doi.org/10.1145/2989225.2989232
https://doi.org/10.1145/3133841.3133842
https://doi.org/10.1145/3133841.3133842
https://doi.org/10.1145/3037697.3037751
https://doi.org/10.1145/76894.76897
https://doi.org/10.1145/76894.76897
https://doi.org/10.1145/1080695.1069994
https://doi.org/10.1145/1080695.1069994
http://dblp.uni-trier.de/db/journals/sqj/sqj25.html#PerscheidSTH17
http://dblp.uni-trier.de/db/journals/sqj/sqj25.html#PerscheidSTH17
https://doi.org/10.1109/EMPDP.1998.647184
https://doi.org/10.1109/EMPDP.1998.647184
https://doi.org/10.1145/2993236.2993241
https://doi.org/10.1145/2975969.2975972
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://doi.org/10.1109/MIC.2010.145
https://doi.org/10.1109/IISWC.2016.7581269
https://doi.org/10.1145/2318202.2318204
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2384577.2384587

	Abstract
	1 Introduction
	2 Towards Efficient Deterministic Replay for Actor Languages
	2.1 Practical Requirements for Record & Replay
	2.2 Communicating Event Loop Actors
	2.3 Record & Replay for Actors
	2.4 Problem Statement

	3 Deterministic Replay for Actors
	3.1 High-level Architecture
	3.2 Identifying Actors
	3.3 Messages & Promise Messages
	3.4 Replay

	4 Capturing External Non-determinism
	4.1 System Calls
	4.2 Asynchronous Data Source
	4.3 Combining Asynchronous Data Sources and System Calls to Record Used Data Only
	4.4 Format for External Data

	5 Compact Tracing
	5.1 Subtraces
	5.2 Trace Format

	6 Implementation
	6.1 Optimized Recording of Ids
	6.2 Buffer Management

	7 Evaluation
	7.1 Methodology
	7.2 Baseline Performance of SOMns
	7.3 Tracing Savina
	7.4 Tracing Acme-Air

	8 Related Work
	8.1 Record and Refinement
	8.2 Back-in-Time Debugging
	8.3 Shared Memory
	8.4 Profiling

	9 Conclusion and Future Work
	Acknowledgments
	References

