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Abstract
To identify optimisation opportunities, Java developers often
use sampling profilers that attribute a percentage of run
time to the methods of a program. Even so these profilers
use sampling, are probabilistic in nature, and may suffer for
instance from safepoint bias, they are normally considered
to be relatively reliable. However, unreliable or inaccurate
profiles may misdirect developers in their quest to resolve
performance issues by not correctly identifying the program
parts that would benefit most from optimisations.

With the wider adoption of profilers such as async-profiler
and Honest Profiler, which are designed to avoid the safe-
point bias, we wanted to investigate how precise and ac-
curate Java sampling profilers are today. We investigate
the precision, reliability, accuracy, and overhead of async-
profiler, Honest Profiler, Java Flight Recorder, JProfiler, perf,
and YourKit, which are all actively maintained. We assess
them on the fully deterministic AreWe Fast Yet benchmarks
to have a stable foundation for the probabilistic profilers.
We find that profilers are relatively reliable over 30 runs

and normally report the same hottest method. Unfortunately,
this is not true for all benchmarks, which suggests their
reliability may be application-specific. Different profilers
also report different methods as hottest and cannot reliably
agree on the set of top 5 hottest methods. On the positive
side, the average run time overhead is in the range of 1% to
5.4% for the different profilers.
Future work should investigate how results can become

more reliable, perhaps by reducing the observer effect of pro-
filers by using optimisation decisions of unprofiled runs or
by developing a principled approach of combining multiple
profiles that explore different dynamic optimisations.
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1 Introduction
There are many tools to analyse the efficiency of a program,
with run-time profiling perhaps being the oldest one, hav-
ing existed for over 50 years [9]. Profilers typically measure
how a program uses resources such as CPU, GPU, and mem-
ory. Software developers use this information to identify
performance bottlenecks and optimisation opportunities.

Unfortunately, modern computer systems are highly com-
plex. Many systems rely on feedback-driven dynamic opti-
misations, caching, and possibly predictive optimisations.
Languages such as Self, Java, JavaScript, Ruby, and PHP, use
just-in-time (JIT) compilers, which compile and optimise a
program based on run-time feedback.

Given this complexity, back in 2010 Mytkowicz et al. [16]
evaluated the accuracy of sampling Java profilers. One of the
many things they showed is that four Java profilers disagreed
on which method took the highest percentage of a program’s
run time. Given that this is typically one of the key questions
developers want to be answered when using profilers, this
result called the reliability of profilers into question.

Sampling profilers encounter many challenges on modern
computer systems. The sampling itself relies on the assump-
tion that every point in the program has the same likelihood
of being observed by the profiler. Thus, sufficient samples
will give a probabilistic view of where programs spend their
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time. Unfortunately, in language virtual machines as used by
Java, safepoints [1], which are sometimes also called yield
points [2], are needed to enable for instance garbage collec-
tion in JIT-compiled systems, yet can bias what points in
a program are visible to a profiler [16], because sampling
might only be possible at these safepoints. Safepoints and
optimisations may also lead to profilers incorrectly assigning
percentages of the run time to wrong parts of the program,
perhaps because the profiler did not have the necessary in-
formation to identify which source code a section of highly
optimised native code originates from.

Given all these issues, and the wider adoption of profilers
such as async-profiler and Honest Profiler that are designed
to avoid the safepoint bias, we wanted to know how precise
and accurate today’s profilers are, 13 years after Mytkowicz
et al.’s work.

With the probabilistic nature of sampling-based profiling,
we are interested in the accuracy and precision of the profiles
that profilers produce. To have a good intuition of what an ac-
curate profile should look like, we chose the AreWe Fast Yet
benchmarks [14]. Since they are relatively small, designed to
be fully deterministic, and contain many classic benchmarks,
it is easier to judge profiles than it would be the case for
larger benchmarks as in DaCapo [4] or Renaissance [18].
With our experiments, we assess whether Java profilers

still disagree with each other when identifying the parts
where a program spends most of its time. While the data of
Mytkowicz et al. [16] suggests that a profiler typically agrees
with itself, we verified this, too. Furthermore, we assess the
run-time overhead on the execution.

We find that profilers identify the same method as hottest
relatively reliably when looking at them in isolation. Though,
on two benchmarks this was not the case, suggesting that
the precision of profilers might be application-specific. Fur-
thermore, the run time attributed to a method may vary, for
YourKit the median difference is quite large with 8%.

When comparing the profiles among profilers, we unfor-
tunately find that they often disagree with each other. We
found this effect for the hottest method as well as the set of
the five hottest methods.

With this disagreement among profilers, it is not clear how
directly actionable the results of a single profiler are. Relying
on a single profile may misdirect optimisation efforts and
not yield the expected results. However, async-profiler, Java
Flight Recorder and Honest Profiler provider very similar
profiles for all but two benchmarks. We discuss this in detail
in Section 5.2.
The overhead of profiling is on average 1% to 5.41% de-

pending on the profiler.
The contribution of this paper is an evaluation of the

precision, accuracy, and overhead of six actively maintained
Java profilers, both commercial and open source.

2 Background
In the following section, we give a wider background on
profiling and then discuss the known issues with sampling
profilers.

2.1 Profilers and Profiling Techniques
Code profiling is a form of dynamic analysis, which enables
developers to measure various aspects of a program’s exe-
cution. What is measured depends on the profiler and the
intention of the user. It can include CPU and memory usage,
or other specific system resources and hardware counters.
The most common code profiling techniques are code instru-
mentation and CPU sampling.

The motivation behind utilizing a profiler is often to find
code segments that can be optimised. Processor vendors such
as AMD have developed profilers for their various products
including AMD RGP1 for AMD GPUs and AMD uProf 2 for
CPUs, while Intel offers VTune.3 The many other profilers
include CodeGuru4 from Amazon, which makes use of ma-
chine learning to help improve applications running Amazon
services, and AppDynamics owned by Cisco for IT infrastruc-
ture monitoring. Different programming languages typically
have their own specific profilers, too. Examples include AR-
Mmap5 for C and C++, JProfiler6 and VisualVM7 for Java
and dotTrace8 for .NET.

2.1.1 Instrumentation. Instrumentation-based profilers
generally add probes to a program. Such probes can take the
form of code instructions at the source, bytecode, or native
code level, which record the desired information. A classic
example is to insert a counter at the start of every method,
which increases whenever its associated method is called, al-
lowing developers to identify possible performance bugs. Sri-
vastava and Eustace [22] proposed a platform called ATOM
(Analysis Tools with OM), which inserts code into a pro-
gram at compilation time, with this inserted code gathering
program attributes and making them available for program
analysis. Instrumentation can be added automatically [15] or
manually [19], and it can be performed either at compilation
time [5] or at run time [12].

2.1.2 CPU Sampling. CPU sampling interrupts the CPU
to gather a snapshot of the current state of hardware and
given software on the machine, for instance recording the
call stack, instruction pointer, memory usage, and thread

1https://gpuopen.com/rgp/
2https://www.amd.com/en/developer/uprof.html
3https://www.intel.com/content/www/us/en/developer/tools/oneapi/
vtune-profiler.html
4https://aws.amazon.com/codeguru/
5https://docs.linaroforge.com/22.1.3/userguide-forge.pdf
6https://www.ej-technologies.com/products/jprofiler/overview.html
7https://visualvm.github.io/
8https://www.jetbrains.com/profiler/
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activities. These interrupts are typically done at regular inter-
vals, but sometimes at random intervals [16], usually many
times during the execution of a program to build an accurate
profile.

In the 1970s, the IBM S/360 [9] used program status words,
which included the program counters to enable an early
form of sampling. In timer-based interrupts, the developer
wants to see what the CPU was doing at each interruption.
In 1974 UNIX introduced PROF [10], one of the first tools
for performance analysis. It can output how much time each
individual function took to execute.

2.2 Problems with Profilers
While profilers are widely used in both industry and research,
they have some well-documented issues.

2.2.1 Overhead. All instrumenting profilers induce some
overhead in the execution of the program [11]. Sometimes
this overhead is minimal, but often it increases the run times
by several factors. The amount of overhead varies depending
on the profiler itself as well as the code profiling technique
it uses. This overhead is problematic, for example when pro-
filing a program which takes several hours to run, as a high
overhead can then increase this total run time to several days.
Thus, sampling-based profilers are often preferred since over-
head is limited to the points when a program is interrupted
for profiling.
Low overhead is especially desirable when profiling sys-

tems in production, since it can negatively affect user expe-
rience and excessive overhead can make profiling of produc-
tion systems impractical. Thus, we assess the overhead Java
profilers add to a program’s execution time in Section 4.3.

2.2.2 Observer Effect. Profiling can change how a pro-
gram executes [20], which is also called the probe effect [6].
This may change or bias the results that a profiler reports. For
example, any code instrumentation intrinsically alters pro-
gram behaviour and may therefore change execution times.
Furthermore, the instrumentation code can also change how
a JIT compiler optimises a program [23]. Similarly, CPU sam-
pling with interrupts may also change the performance of
program, for instance by changing CPU caches or interact-
ing with multi-threaded executions [17]. In the worst case,
this may lead to attributing execution time to parts of the
program which get minimal benefits from developers trying
to optimise them.

2.2.3 Sampling Randomness and Safepoint Bias. Safe-
points [1], sometimes called yield points [2], are needed to
enable for instance garbage collection, and guarantee that
the system is in a known state, where it is safe to interrupt
the thread. Interrupting at safepoints limits the observer ef-
fect and ensure that the VM is in a state in which a stack
can be read correctly, samples are typically collected at these

safepoints. Unfortunately, this can lead to inaccurate profiles,
as shown by Mytkowicz et al. [16].

The compiler moves and eliminates safepoints to minimize
the overhead they cause, which can result in sections of
hot code not being fully sampled, if there are few or no
safepoints in that section. This results in sampling profilers
not sampling at uniform intervals, but instead sampling only
a reduced part of the program, resulting in biased samples.
This leads to profilers incorrectly assigning percentages of
the run time to the wrong parts of a program.

2.2.4 Reducing Safepoint Bias. Several of the profilers
we are testing aim to reduce the impact of safepoint bias.

Honest Profiler and async-profiler aim to minimise bias by
using AsyncGetCallTrace, an OpenJDK internal function,
which allows them to record stack traces without requiring
a thread to be in a safepoint. However, to be able to correctly
interpret the obtained data for the top stack frames, they may
need to rely on nearby safepoints.9 Therefore, this approach
does not fully eliminate safepoint bias, but it reduces it.

The async-profiler additionally collects stack traces with
perf_events. By combining them with the stack traces col-
lected with AsyncGetCallTrace, it can get profiling infor-
mation for the Java code as well as any native code, i.e., in
the VM implementation or any of the used native libraries.
Java Flight Recorder uses its own code, independent of

AsyncGetCallTrace, to access the stack traces without re-
quiring safepoints, but has similar limitations as the other
two profilers. Since the VM assumes that a thread’s stack is
only accessed in a safepoint, it does not normally produce
metadata outside of these safepoints to safe memory. The
HotSpot JVM supports the -XX:+DebugNonSafepoints flag
to ensures that metadata is available also when execution
is not in a safepoint, which can help with identifying the
correct line number or bytecode index for a stack sample.

Overall, this means there is only a limited amount of infor-
mation available for the top most stack frame, which limits
tools in identifying the specific bit of code executed. Thus, it
remains a limited safepoint bias for sampling profilers.

2.2.5 Non-determinism in JVMs. Multiple runs of the
same Java program on the same JVM may show different
performance. This is because JVMs perform just-in-time
compilation in parallel to program execution. For example,
this can cause variation when the compiler accesses profile
information. Access to profile information is designed so
that multiple threads can read and write it without requiring
synchronization to avoid overhead for application threads.
However, it may lead to different optimization decisions,
which may result in different run times between executions.

9Why JVM modern profilers are still safepoint biased? , Jean-Philippe Bempel,
https://jpbempel.github.io/2022/06/22/debug-non-safepoints.html
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3 Research Questions and Methodology
This section details our research questions and describes our
experimental setup, metrics, the benchmarks, and how we
collect data to evaluate each profiler.

3.1 Research Questions
To focus our inquiry, we formulate the following research
questions.

RQ1: Do sampling profilers give precise results? As ar-
gued in Section 2.2.3, sampling profilers are inherently prob-
abilistic and face many challenges, which may bias and dis-
tort results. Thus, our first question to investigate is whether
today’s profilers are accurate, i.e. give correct results, and
precise, i.e. whether they agree with each other. Given the
complex systems we are working with, assessing accuracy is
not directly possible: even when crafting workloads where
we have an expectation of where time is going to be spent,
with dynamic optimisations in soft- and hardware, we can-
not precisely quantify this. Instead, we focus on whether the
results are precise. This means, we expect measurements to
be tightly grouped.
To this end, we assess the percentage of run time that a

profiler attributes to various methods, and compare it with
percentages reported by the same profiler across 30 runs.
We also compare these reported values with results reported
across the different profilers.

RQ2: Do sampling profilers reliably identify the same
hottest methods in an execution? Related to precision,
but more focused on whether the results are actionable for
developers, we will assess whether the profilers correctly
identify the same hottest methods. Often, a developer may
only need a ranking of the methods to effectively focus their
attention. The precise run time a method takes may only
be of secondary importance. Thus, here we investigate the
method rankings that profilers create based on where time is
spent and assess their consistency between different profiler
runs and across profilers.

RQ3: How high is the run-time overhead of sampling
profilers? Since the overhead of profiling may interfere with
program execution and high overhead may make profilers
impractical for certain use cases, we also assess their impact
on the overall run time of a benchmark.

To assess the overhead, we run the benchmarks both with
and without profilers attached, and compare the overall run
time between both sets of runs.

Since all experiments were run 30 times with 300 iterations
each, we compute the run time by taking the median over
the 30 · 300 data points. To avoid our numbers being skewed
by the warmup phase, we rely on the median run time to
effectively characterize run-time overhead.

3.2 Experimental Setup
For our experiments, we chose six different profilers, evaluate
them on the AreWe Fast Yet benchmarks [14], and perform
the following high-level steps for each profile:

1. We run each of the 14 benchmarks 30 times for 300
iterations, with no profiler attached, to determine the
baseline performance.

2. We then run all 14 benchmarks 30 times with a profiler
attached for the 300 iterations to record profiles.

3. From the recorded profiles, we extract the 10 hottest
methods, the percentage of the total execution run
time spent in each method, and the total run time.

We run everything 30 times to compensate for the prob-
abilistic nature of sampling profilers, the aforementioned
non-determinism of JVMs (see Section 2.2.5), and other ex-
ternal influences. We expect that 30 runs are sufficient for a
reliable profile to emerge.
We discuss the details of this setup in the remainder of

this section.

3.3 The Chosen Profilers
We rely on the following profilers:

• async-profiler10 is an open source project. It aims for
low-overhead sampling without safepoint bias.

• Honest Profiler11 is an open source project. It also aims
for low-overhead sampling without safepoint bias.

• Java Flight Recorder12 is part of the JDK and allows
the collection of run time statistics and includes a
sampling-based profiler.

• JProfiler13 is a commercial tool and supports CPU sam-
pling and instrumentation.

• perf14 is a Linux tool which also supports sample-based
profiling of Java applications.

• YourKit15 is a commercial tool that aims to support
profiling with low overhead.

For our experiments, we chose six actively maintained
profilers. This includes the two commercial products JProfiler
and YourKit, as well as four open source profilers either
specifically designed for Java, or in the case of perf, with
Java support. We included async-profiler and Honest Profiler,
since they are specifically designed to avoid the issue of
safepoint bias as identified by Mytkowicz et al. [16]. Since
the Java Flight Recorder is directly integrated in the Java
Development Kit (JDK) and theHotSpot JVM,we also include
it in our investigation. We considered to also include Xprof
and Hprof since they were used by Mytkowicz et al. [16],
but they are unfortunately no longer actively maintained.

3.4 Benchmarks and Experimental Setup
As previously mentioned, we evaluate the profilers on the
AreWe Fast Yet benchmarks [14]. We choose them since they
contain relativelywell-understood classic benchmarks, which
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encapsulate a variety of common program behaviours, with
9 microbenchmarks and 4 slightly larger benchmarks.
Table 1 provides a brief overview of key metrics. Most

relevant for our experiments is the last column with hot
methods, i.e., methods that are executed in each iteration,
may eventually be JIT compiled, and are candidates for being
included in a profile. Given the size of our benchmarks, it is
also possible for us to inspect the code and compare obtained
profiles with our own intuition.
We also chose these benchmarks because they are de-

signed to be fully deterministic. Thus, they show identical
behaviour across iterations by avoiding using for instance
Java’s HashMap, which can rely on object hashes that are not
the same across multiple program executions. Using bench-
marks with fully deterministic behaviour gives us a more
reliable foundation for assessing sampling profilers.

However, choosing these benchmarks also means they are
less representative of large Java applications. While bench-
mark suites such as DaCapo [4] and Renaissance [18] would
bemore representative, we aimed to give the profilers a work-
load that can be considered a best-case scenario for them.
Thus, the benchmarks are pure single-threaded Java and do
not rely on for instance the Java Native Interface or other
features that could be a challenge for the profilers.

Table 1. Basic metrics for the AreWe Fast Yet Benchmarks

Executed Executed Hot
Benchmark Lines Classes Methods Methods

CD 356 16 43 41
DeltaBlue 387 20 99 75
Havlak 421 18 110 87
Json 232 14 56 56
Richards 279 12 47 47

Bounce 42 5 11 11
List 30 2 9 9
Mandelbrot 39 0 2 2
NBody 105 3 14 14
Permute 33 3 13 13
Queens 36 3 13 13
Sieve 22 3 9 9
Storage 23 4 10 10
Towers 42 2 12 12

To execute the benchmarks with and without profilers, we
rely on ReBench [13]. This tool automates the benchmark

10https://github.com/async-profiler/async-profiler
11https://github.com/jvm-profiling-tools/honest-profiler
12https://openjdk.org/jeps/328
13https://www.ej-technologies.com/products/jprofiler/overview.html
14https://perf.wiki.kernel.org/index.php/Main_Page
15https://www.yourkit.com/

execution and documents the configuration of the profilers
to facilitate reproducibility.

All benchmarks were executed on a machine with Rocky
Linux 9, and a Linux kernel version 5.14.0. The machine has
a AMD Ryzen 5 36000 6-Core processor and 32 GB DDR4
RAM. We use the Java HotspotVM 17.0.7.

To give the profilers the best possible chance for accurate
profiles, we run each benchmark for 300 iterations. None of
the initial arguments set will change during the iterations.
Since all benchmarks reach peak performance early on, this
gives the profilers a lot of iterations to determine an accurate
profile. Furthermore, this should minimise external factors,
such as noise caused by interference from the operating
system. All profilers are configured to take a sample every
10ms. While such a high sampling rate may incur higher
overhead, it should also ensure that the profilers have a good
chance to get a detailed picture of the benchmark execution.
To put this sampling rate into perspective, the median run
time spent executing an iteration across our benchmarks
is 102ms. The minimum is 92ms, and the maximum 152ms.
Therefore, we expect samples to happen between 9 and 15
times per iteration, with between 2,700 and 4,500 samples
per benchmark execution.

With all these settings, a complete run of all experiments
takes about 30 hours to complete.
The profilers typically create output files, which we pro-

cess to collect all needed information, including the 10 hottest
methods, total run time, and the percentage of run time each
method took.
Since output formats and details differ widely between

profilers, the data is first converted into a uniform JSON
representationand then method names are normalised to
enable easy comparison.

4 Results
In this section, we analyse the obtained data and answer our
research questions. We analyse a profiler first by comparing
it to itself, to determine how precise and reliable its results
are over multiple runs. Afterwards, we examine how reliable
profilers are in identifying the hottest methods by comparing
them to each other. Finally, we assess the overhead of each
profiler.

4.1 Self-comparison
We first assess a profiler’s precision and reliability.

4.1.1 Precision. To assess how precise a profiler is in de-
termining the percentage of run time for each method in a
benchmark, we take the difference between the maximum
and minimum reported run time percentage. This gives us
an idea of how much a profiler disagrees with itself. Since
sampling profilers are probabilistic by nature, we limit the
analysis to methods that contribute to at least 5% of their
average run time to the program. This minimises the noise

https://github.com/async-profiler/async-profiler
https://github.com/jvm-profiling-tools/honest-profiler
https://openjdk.org/jeps/328
https://www.ej-technologies.com/products/jprofiler/overview.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.yourkit.com/
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Figure 1. Difference in % of run time for every method, for
each profiler. The boxplot shows the difference between the
minimum and maximum percentage of run time for each
method. The × indicates the mean. The median difference is
between 2 and 8%, suggesting a high precision.

in the results and likely represents what developers are in-
terested in when trying to optimise a program.

Figure 1 shows the distribution of differences per profiler.
For instance, a value of 10% means the difference between
the minimum and the maximum run time is 10%.

For all 6 profilers, the median ranges between 2% and 8%.
This suggests that they have relatively high precision for
most methods. However, the maximum differences found for
each profiler are about 18% for async-profiler, 18% for Honest
Profiler, 29% for Java Flight Recorder, 26% for JProfiler, 99%
for perf, and 32% for YourKit. These high differences indicate
that each profiler has a rather low precision for at least some
methods or benchmarks.
DeltaBlue and Richards were the two benchmarks on

which profilers struggled to get good precision. Addition-
ally, perf has a group of 4 outliers that show a difference
of 99% on the NBody and Permute benchmarks. perf attrib-
uted drastically different run times to two methods between
runs. However, this effect is unique to perf, as the other 5
profilers have good precision for the NBody and Permute
benchmarks.
To investigate the impact of the difference, we created

plots for each benchmark showing the average run time
attributed to a method. Figure 2 shows a worst-case example
with the DeltaBlue benchmark using Java Flight Recorder.
The error bars show the minimum and maximum values.
The striped red bars identify the methods that were at least
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BinaryConstraint.inputsHasOne

EqualityConstraint.execute

ScaleConstraint.recalculate

BinaryConstraint.isSatisfied

BinaryConstraint.chooseMethod

Planner.addPropagate

Planner

Planner.chainTest

AbstractConstraint.satisfy

ScaleConstraint.execute

BinaryConstraint.<init>

Planner.incrementalAdd

Plan

UnaryConstraint.chooseMethod

AbstractConstraint.<init>

Java Flight Recorder Profile of DeltaBlue

Figure 2. Bar chart for all methods in the DeltaBlue bench-
mark identified by Java Flight Recorder. A bar represents
the average percentage of run time for a method, with er-
ror bars being the minimum and maximum value found for
that method. Striped bars are methods that were the hottest
method at least once. The large error bars representing the
minimum/maximum shows that methods can easily switch
places in the ranking.

once reported as the hottest method in one of the 30 profile
runs, which was the case for 10 different methods on this
benchmark. In addition to the large minimum/maximum
range indicated for themethods, this suggests that we can not
fully rely on profiles from Java Flight Recorder on DeltaBlue
to guide optimisation decisions.
As a second example in Figure 3, we chose one bench-

mark on a profiler with a median amount of imprecision. It
shows the aggregate over the 30 profiles for the CD bench-
mark from YourKit. It being a median case, there is only one
method that was identified as the hottest in all 30 runs, but
both RedBlackTree.treeInsert and CollisionDetector.
recurse have a large minimum/maximum range, which
means they can easily switch places in the ranking. Meth-
ods 3–5 could also appear in different orders based on their
minimum/maximum range.
These large differences suggest that a single profile run

even on a benchmark with good precision will still leave
doubt on where a program spends its time.
As an example with little self-imprecision, we saw the

NBody benchmark on the Honest Profiler. Here the maxi-
mum difference seen for the 10 hottest methods was at most
3% and no method had enough difference to overlap with
another method.
The results presented here indicate that profile runs can

significantly differ from one to the next. In the worst case,
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Figure 3. Bar chart for all methods in the CD benchmark
identified by YourKit. Bar represents the average percent-
age of run time for a method, error bars are the minimum
and maximum value found for that method. The large range
between minimum/maximum shows that runs can be signif-
icantly different from one another.

this makes the profiles highly unreliable, but even in the me-
dian case, it suggests that one would want to collect at least
a second profile if the precise ordering of hottest methods is
of interest.
To answer our RQ1, of whether sampling profilers give

precise results, it seems this depends on the particular appli-
cation in question. If the precision matters, for instance to
prioritise which areas of a program to investigate for opti-
misations, it seems necessary to collect multiple profiles to
assess the precision on a case-by-case basis.

4.1.2 Reliability. To get a more complete overall impres-
sion of how reliable profilers identify the same hottestmethod
among their 30 profiles, we look at the statistics in Table 2.
The Hottest methods columns give the median and max-

imum number of different methods reported as hottest. A
value of one means that across all 30 profiler runs, the same
method was identified as hottest. Since the numbers aggre-
gate across all benchmarks, the median reliability to identify
the hottest method seems to be given. The maximum num-
ber of methods identified as hottest suggests that JProfiler
and YourKit are having the least issues with imprecision,
identifying at most two methods as hottest.
While the hottest methods are typically of most interest,

we also had a look at the full set of the top 10 methods and
how stable it is across the 30 runs. The column Unstable
Methods counts the methods that do not appear in the top 10
for all 30 runs. To reduce the noise of methods that contribute

Table 2. Identification of the first hottest method in a given
run, for each profiler. We show the median number of such
methods for each benchmark, as well as the maximum num-
ber of first hottest methods observed.Unstable Methods refers
to the number of methods that do not appear in the top 10
hottest for all 30 runs, but appear in it for at least one run.

Hottest Methods
Profiler Median Max Unstable

Methods

async-profiler 1 6 35
Honest Profiler 1 9 38
Java Flight Recorder 1 10 43
JProfiler 1 2 16
perf 2 4 16
YourKit 1 2 74

minimally to the overall run time, we only consider methods
that contribute at least 1% of the total run time on average. An
Unstable Methods count of 0 would mean the profiler had the
same top 10 methods over all 30 runs for all 14 benchmarks.
A higher value means higher unreliability.

To summarise, with a median number of one identified
first hottest methods for all but perf, the profilers identify the
hottest methods reliably between runs. However, the high
maximumnumber of the first hottest methods is still concern-
ing and indicates that async-profiler, Honest Profiler, Java
Flight Recorder, and perf can be unreliable for certain bench-
marks. Additionally, the Unstable Methods count reveals a
poor reliability of the profilers. For instance, YourKit sees 74
methods that are not consistently in the top 10. Consider-
ing we discard from this metric the methods that contribute
less than 1% of the runtime, we argue that the profilers are
unreliable at identifying the same set of hot methods.

An example of change in the first hottest method happen-
ing from profiler to profiler can be seen with Figure 4.

Each method plotted was identified as the hottest method
at least one in all of the 30 runs. Figure 4 plots the percent-
age of run time over the median run time of iteration for
that profiler run. The method with the highest amount of
percent of the run time (the furthest up on the y-axis) was
identified to be the hottest method for that iteration. Every
method that is plotted was the hottest method at least once,
which correlates with the results showed in Table 2, with
DeltaBlue being the benchmark with the maximum number
of methods identified as hottest for async-profiler. Methods
like som.Vector.forEach can, during one iteration, be re-
ported to take up 28% of run time, yet on another iteration
take up only 8% of run time.
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Figure 4. Percentage of run time over median run time for
the six hottest methods for the DeltaBlue benchmark profile
from async-profiler. We observe multiple changes in what
the first hottest method is (the furthest up) for each iteration.

4.2 Across Comparison
Even if we have identified a profiler as precise and reliable so
far, the methods it identifies could be incorrect. To assess the
accuracy, we now compare the identified methods between
profilers to see if there is disagreement.

4.2.1 Average Comparison. Looking back to Figure 1,
there are some observations that can be made in comparing
the profilers against each other.
YourKit has the highest average difference of 7.1% and

async-profiler has the lowest average difference of 2.1%. This
indicates a large difference in precision between these two
profilers. The most likely explanation for this difference is
that they use different sampling techniques. Unfortunately,
YourKit is closed-source. Thus, we were unable to investigate
this theory further.

For the maximum difference, perf has the previously men-
tioned outliers in the 99% range. No other profiler exhibited
such extreme outliers. We assume this might be caused by
some issue in perf’s Java support.

4.2.2 Unions. Mytkowicz et al. [16] compared the cardi-
nality of the union of the first hottest method over all profiles,
which means they counted how many different methods
they see. We will use their approach, too. As mentioned
in Section 3.1, assessing the accuracy of a profiler is not
directly possible, so we assess the disagreement between
profilers instead. We first determine the hottest method per
benchmark for each profiler across the 30 runs based on the
highest average percentage of run time. We then normalise
the names, since different profilers will report names in a
different format, and finally count how many different first
hottest methods are reported for each benchmark. In the
best case, all profilers agree and the size of the union is one.

In the worst case all profilers report a different method, and
we get a union of six.
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Union of First Hottest Methods

Figure 5. Union1, i.e., count of different first hottest methods
across all profilers.

When looking at the results in Figure 5, we see that our
six profilers agree only on Mandelbrot, NBody, and Permute
completely and we see exactly one first hottest method. For
all other benchmarks, we see that there were 1–4 profilers
that identified a different method as hottest. DeltaBlue and
Richards show here the least consistency, with only two
profilers agreeing on the hottest method, i.e., we see five
different hottest methods.
If at least one profiler disagrees, then that one profiler

could be inaccurate. Since developers may use the ranking to
prioritise optimisation projects, the observed high disagree-
ment suggests that prioritisation decisions may be based on
unreliable data.
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Union of Five Hottest Methods

Figure 6. Union5, i.e., count of different methods reported
for the five hottest methods across all profilers.

Figure 6 shows the results for the union for the 5 hottest
methods. Here we count the number of different methods
identified as being in the top 5, ignoring their ordering. Thus,
in the best case, we count the same five methods. In the
worst case, each of the six profilers would report five different
methods, giving us a count of 30 differentmethods, indicating
complete disagreement.
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Figure 7. Percentage of run time over median iteration run
time for the method Queens.placeQueen, for all 6 profilers.
We observe clearly different amounts of percentage of run
time between many profilers, showing clear disagreement.

Even though there was good self-reliability, these results
suggest that profilers struggle to identify the same set of 5
hottest methods. Since the identified hottest methods differ
from each other, at least one of the profilers must incorrectly
identify the hottest methods.
As Figure 6 shows, only NBody reaches the best score of

50% agreement on the 5 hottest methods between all pro-
filers. This is because async-profiler, Honest Profiler, and
Java Flight Recorder are in complete agreement. For the List
benchmark, async-profiler, Java Flight Recorder and YourKit
were in agreement except for one method, which lead to the
union set of 16 methods.

DeltaBlue is the worst benchmark in terms of agreement
with only two pairs of profilers in agreement. This is not
surprising, as shown in Figure 2, there is high imprecision
on this benchmark resulting in all but two pairs of profilers
agreeing on a method.

For Mandelbrot, which should only have two hot methods
(see Table 1), the profilers report a variety of other meth-
ods, including for output of results and the bytecode parser,
causing more than the maximum of 12 expected methods.

To answer RQ2, i.e., how reliable profilers are at identify-
ing the same hottest methods, Figure 5 shows that profilers
reliably identifying the first hottest method for few bench-
marks, and there are benchmarks where six profilers report
five different methods. When considering Figure 6, reliability
further decreases when comparing the 5 hottest methods
even without taking ordering into account.

4.2.3 Analysis of Individual Methods. The unions of
the profilers gave a coarse summary of howprofilers compare
to one another. We will now take a closer look at selected
examples, to see how the data looks in detail.

Figure 8. Percentage of run time over median iteration run
time for the method Bounce.benchmark for all 6 profilers.
We observe clearly different amounts of percentage of run
time between many profilers, showing clear disagreement

Our first example in Figure 7 shows how the profilers
attribute run time to the Queens.placeQueen method. It
shows the median iteration time on the x-axis and the per-
centage of run time on the y-axis, for 30 runs. This allows us
to see possible patterns caused for instance by optimisation
decisions of the just-in-time compiler.

perf (▼) and JProfiler (■) attribute the majority of the run
time to the Queens.placeQueen method, whereas the other
profilers attribute much less time to it.
For async-profiler (•), Java Flight Recorder (▲), YourKit

(_), and Honest Profiler (×), we see run times in the range
between 8% and 15%. JProfiler attributes 68% to 82% of the
run time to it and perf is quite stable at 87%.

For Honest Profiler (×) and async-profiler (•), we further
see two clear groups separated by the median iteration time,
which suggests that we may observe different optimisation
decisions between runs. Though, for the other profilers, we
do not see a similarly tight grouping.

To answer RQ2, perf and JProfiler disagree strongly with
the other four profilers for this method, this suggests that
either two of the profilers or all four are incorrect (as in,
show the wrong amounts of percent of run time) for this
benchmark. Our working hypothesis is that perf and JPro-
filer do not use information about inlining decisions when
attributing run time.

Figure 8 is another example of profilers disagreeing with
one another. Honest Profiler (×), async-profiler (•), Java
Flight Recorder (▲) are grouped around 6% to 10% run time
on the y-axis, with a few outliers which have a much larger
iteration run time indicated on the x-axis, but still maintain
the same amount of percent of run time.
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perf (▼) is in close agreement with the other three profilers,
but YourKit (_) and JProfiler (■) attribute 50% to 70% percent
of the run time to this method. This example again shows
that different profilers can have large disagreements in the
amount of percent of run time for specific methods.

To conclude this section, Figure 7 and Figure 8 both show
that profilers can strongly disagree with each other. The
amount of disagreement in percent of run time is large
enough that we can assume that at least one of these profil-
ers is incorrect in its assessment of these benchmarks. We
demonstrated that profilers can be wildly inaccurate in their
allocation in percent of run time, and therefore multiple
profilers cannot reliably identify the hottest methods.

4.3 Overhead
To assess the overhead of our profilers, we recorded the
time spent in each benchmark iteration with and without
a profiler. We take the median iteration time to calculate
the overhead. Figure 9 shows the distribution across all 14
benchmarks as a boxplot for each profiler.

Figure 9. The average percentage of run time overhead
induced by each profiler. The × indicates the mean.

The mean overhead, indicated with an ×, ranges from 1%
to 5.4%, which means there is a significant difference depend-
ing on the profiler. JProfiler, which has the highest overhead
of 5.4% may also be considered the most reliable based on Ta-
ble 2. However, arguably it has five times the overhead than
the best profiler, which may make it impractical for some
use cases and may bias the result in other ways because of a
non-negligible observer effect [17, 21].

There are also outliers where the overhead is negative.
This suggests that these benchmarks ran faster with a pro-
filer being attached than without it. A possible explanation
for this is the observer effect. The presence of an attached
profiler may change timings and subsequently cause the com-
piler to make different optimisation choices than it does nor-
mally when there is no profiler attached, causing a speedup.
With regards to RQ3, we found that the average over-

head is practical for many applications. The worst case we
observed was an overhead of 7.8%, which may be impracti-
cal for large long-running systems. However, this run time
overhead seems acceptable for short-running programs.

5 Discussion
In this section, we discuss observations we made while col-
lecting and processing our data.

5.1 A Closer Look at the Queens Benchmark
In our collection of results, we discovered a trend in the data
for certain profilers and certain methods. This is exemplified
in async-profiler and the Queens benchmark. Table 3 shows
the three hottest methods and the minimum/maximum per-
centage of run time they each had across 30 runs. These
three methods were the three hottest observed for every
single run. For each of these methods, we observed signifi-
cant differences between the minimum and maximum run
time percentage: getRowColumn had a difference of 15.17%,
placeQueen had 10.01% and setRowColumn had 6.88%.

Table 3. Minimum and maximum percentage of run time
attributed to the three hottest methods for the Queens bench-
mark, for async-profiler, over 30 profiles.

Benchmark Minimum Maximum Difference

getRowColumn 56.81% 71.98% 15.17%
setRowColumn 16.81% 26.82% 10.01%
placeQueen 8.92% 15.8% 6.88%

To investigate these differences, we compare the runs with
one another in more detail. Figure 10 plots out all 30 runs
of async-profiler, comparing the percent of the run time of
a method over the median of execution for an invocation.
Figure 10 displays a bimodal trend: between 107 and 109
milliseconds on the x-axis, there is a separation between
the two groups of plots in the amount of percentage of run
time, with setRowColumn and placeQueen both lowering
in run time percentage as getRowColumn increases in this
regard. The fact that some methods fall as others rise in run
time percentage is logical, since the total sum of percentages
for all methods must always be equal to 100%: therefore if
the run time percentage increases for one method, it must
decrease for another in turn.
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Figure 10. Percentage of run time over median run time
of invocation for the three hottest methods in the Queens
Benchmark with async-profiler. This displays a bimodal
trend.

A possible reason for this bimodal trend may be different
optimisation choices by the compiler. When the run time
is between 108 and 109 milliseconds, the compiler could
make a different choice in optimisation. This choice could
cause a method to take a longer or shorter percentage of
run time, affecting the results of the profile. This may all be
caused by the observer effect: as profilers are adding their
own overhead onto the running program, this may alter
timings and cause the compiler to see different execution
metrics resulting in different optimisations.

Returning back to Figure 7, Honest Profiler and Java Flight
Recorder show a bimodal trend much like async-profiler, yet
perf and JProfiler do not. For perf and JProfiler, a change in
the median run time of a profile seems to have no consistent
effect on the percentage of run time for both profilers. perf
stays stable at 96%, while JProfiler exhibits variation in the
70%–80% range yet with no clear bisection in its results. For
these three profilers, this change in percentage of run time
could be considered not to be imprecision, but instead an
accurate detection of a change in the performance of the
program. As an alternative conclusion, if this is the result of
a profiler fault, then all three share this same mistake.

5.2 Groups of Profilers
We have just highlighted similarities between three profilers:
async-profiler, Java Flight Recorder and Honest Profiler. As it
turns out, this is an observed trend: we found that throughout
our results, these three had far more agreements with one
another than other sets of profilers.
Figure 11 features the same results as Figure 5, with an

added detail: we establish a distinction between these three
profilers and the three others. The portion of the bars that
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Figure 11. Union of first hottest method across all profiles,
highlighting the agreements between async-profiler, Java
Flight Recorder and Honest Profiler (solid blue)

is solid shows the union of the hottest method for async-
profiler, Java Flight Recorder and Honest Profiler. The striped
portion of the bar indicates the union over perf, YourKit
or JProfiler. This highlights that async-profiler, Java Flight
Recorder and Honest Profiler agree more often than the
other 3 profilers. It is also striking that for 12 out of our
14 benchmarks, these three profilers are in total agreement
with the first hottest method, i.e. having a union of size 1.
However, since they do not fully agree with themselves on
DeltaBlue and Richards (see Section 4.1), there is also no
agreement among each other here.

5.3 Workload with Expected Profile
In some other work, specific workloads are crafted for which
the expected profile is known [3]. We however assumed that
this would be too unreliable in the context of a modern JVM
with dynamic optimization on top of system with complex
caching effects, a CPU that does, e.g., out of order execution
and branch prediction. Our assumption here is that we can
not reliably predict the run time distribution for a program
to be usable as an oracle for what profilers should give.

6 Related Work
In addition to comparing to Mytkowicz et al. [16] in more de-
tail, we also briefly discuss work on optimisations of profiling
techniques, as well as some open source work.

The work of Mytkowicz et al. [16] was a major motivation
for our study. They investigated the accuracy of four Java
profilers, and their evaluation showed that profilers have
major disagreements as to which methods are the hottest.
As one of the possible reasons for this discord, they iden-
tify safepoint bias, which restricts stack sampling to GC
safepoints and means not all program points have the same
likelihood of being profiled. As a solution, they propose to
collect samples truly randomly by using a dedicated thread
with a randomized timing interval, which can also sample
threads that are not in a safepoint.
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async-profiler and Honest Profiler use HotSpot’s support
for such sampling independent of safepoints. Nonetheless,
when comparing unions of agreement of profilers, we found
similar disagreement as reported by Mytkowicz et al. [16]. In
some ways, the situation may have gotten even worse, since
they reported very small 95% confidence interval around the
mean run time they reported for 30 runs.

Hofer et al. [8] propose techniques to improve stack sam-
pling and reduce the overhead and possible bias of sampling
profilers. They use partial safepoints, which can reduce the
number of threads that need to participate in a safepoint and
use incremental stack sampling, which minimizes the over-
head. In their evaluation, they use the DaCapo benchmarks
and assess the accuracy of calling context trees, which are
merged stack traces. They focus on comparing the calling
context trees and the presence of hot edges, which we con-
sider weaker criteria than what we use here. However, for
these calling context trees, they do not identify any major
accuracy issues.

A very recent paper on a profiler for Python [3] uses a mi-
crobenchmark to assess the precision of its sampling-based
approach compared to instrumentation-based Python pro-
filers. Though, their evaluation is assuming the absence of
just-in-time compilation. Thus, it can not be applied in our
context. Since their work uses CPython, which only has an
interpreter, we cannot directly compare the overhead they
report either.
Outside of academic literature, the issue of profiler bias

and issues around accuracy has also found wider attention
and has been documented in several blog posts. This in-
cludes a series of posts by Nitsan Wakart,16 who reported
on technical details of profiler, limitations, and discussed the
underlying issues of safepoint bias.
Similarly, Alexey Ragozin17 assesses the accuracy issues

on specific practical use cases, for instance also including
use of Java’s Native Interface, making the case that profilers
have different tradeoffs in what they can profile.

7 Conclusion and Future Work
Sampling profilers are one of the main tools developers reach
for to identify the source of performance issues. However,
they have known limitations around sampling bias, for in-
stance caused by the safepoint bias observed by Mytkowicz
et al. [16], and a general observer effect, for instance caused
by profiling overhead.

With the availability of profilers that aim to avoid specif-
ically the safepoint bias such as async-profiler and Honest
Profiler, in this work, we investigate whether profilers give
precise results, reliably identify the same hottest methods,

16The Pros and Cons of AsyncGetCallTrace Profilers, Nitsan Wakart, https:
//psy-lob-saw.blogspot.com/2016/06/the-pros-and-cons-of-agct.html
17Lies, darn lies and sampling bias, Alexey Ragozin, https://blog.ragozin.info/
2019/03/lies-darn-lies-and-sampling-bias.html

and assess what their overhead on the execution is. We study
the six Java profilers async-profiler, Honest Profiler, Java
Flight Recorder, JProfiler, perf, and YourKit. Instead of using
largely opaque application-sized benchmarks, we use the
AreWe Fast Yet benchmarks [14] with 9 micro and 5 larger
benchmarks with fully deterministic behaviour, which give
us a stable foundation and a better chance to match profiles
with our understanding of the benchmark code.

Our results show that a profiler normally identifies the
same hottest method reliably across multiple runs. However,
we observed major outliers where they could not identify a
hottest method reliably, which may mean that their preci-
sion is application-dependent. Furthermore, we found that
there is high disagreement between the profilers on what the
hottest method of a benchmark is, and which set of methods
should be contained in the five hottest methods.

Our results are concerning as they indicate that profilers
are not correctly identifying the same methods as the hottest
ones, and are not associating the correct amount of percent
of run time to them. Since there is also no reliable consensus
between a majority of them, this also casts doubt on how
reliable we can consider sampling profilers on a modern JDK.

The main issues for future work are precision and reliabil-
ity of sampling profilers. While they have largely good preci-
sion compared to themselves, benchmarks such as DeltaBlue
and Richards suggests that there might be deeper issues.
While we have not yet investigated the underlying issues
in detail, one hypothesis could be a difference in dynamic
optimisation decisions, which may be caused by the pres-
ence of the profiler or its overhead. To address the issue,
replayable optimisation decisions [7] could be one possible
solution. Another might be a principled approach to steer
optimisation decisions, and possibly randomize them and
aggregate profiles over multiple runs.
Future work should also investigate the different imple-

mentation techniques in more detail to identify avoidable
causes for imprecision.

The experiment setup we have built for this paper is avail-
able as open source.18 It can be extended to include additional
Java profilers. Future work is invited to build on our system
for instance to investigate novel sampling approaches or to
integrate with JIT compilers to avoid any observer effects.
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A Raw Data
The following table contains part of our raw data to determine the hottest method to complement Figure 5 and Figure 11.

Profiler Method % of run time Profiler Method % of run time

Bounce Permute
Async Bounce$Ball.bounce 84.0% Async Permute.permute 58.3%
honest-profiler Bounce$Ball.bounce 82.7% honest-profiler Permute.permute 51.1%
JavaFlightRecorder Bounce$Ball.bounce 84.9% JavaFlightRecorder Permute.permute 55.9%
JProfiler Bounce.benchmark 53.5% JProfiler Permute.permute 98.4%
Perf Benchmark.innerBenchmarkLoop 74.3% Perf Permute.permute 49.5%
YourKit Bounce$Ball.<init> 63.7% YourKit Permute.permute 55.7%

CD Queens
Async cd.RedBlackTree.treeInsert 20.9% Async Queens.getRowColumn 63.2%
honest-profiler cd.RedBlackTree.treeInsert 20.8% honest-profiler Queens.getRowColumn 62.5%
JavaFlightRecorder cd.RedBlackTree.treeInsert 22.7% JavaFlightRecorder Queens.getRowColumn 64.5%
JProfiler cd.Vector2D.<init> 44.2% JProfiler Queens.placeQueen 75.3%
Perf cd.RedBlackTree.treeInsert 24.4% Perf Queens.placeQueen 96.2%
YourKit cd.CollisionDetector.isInVoxel 22.9% YourKit Queens.setRowColumn 62.3%

Havlak Richards
Async som.Vector.forEach 16.8% Async Richards.benchmark 36.9%
honest-profiler deltablue.Planner.chainTest 15.4% honest-profiler richards.Scheduler.schedule 45.5%
JavaFlightRecorder deltablue.AbstractConstraint.<init> 15.1% JavaFlightRecorder richards.Packet.<init> 13.0%
JProfiler som.Vector.<init> 29.7% JProfiler richards.TaskControlBlock.runTask 84.1%
Perf deltablue.Planner.chainTest 28.1% Perf richards.RBObject.<init> 37.0%
YourKit som.Vector.forEach 36.1% YourKit richards.TaskControlBlock.runTask 38.2%

Json Sieve
Async java.lang.String.equals 21.6% Async Sieve.sieve 89.6%
honest-profiler java.lang.String.equals 21.5% honest-profiler Sieve.sieve 88.6%
JavaFlightRecorder java.lang.String.equals 25.8% JavaFlightRecorder Sieve.sieve 90.6%
JProfiler java.lang.String.substring 91.3% JProfiler Sieve.sieve 93.4%
Perf json.JsonParser.readStringInternal 32.2% Perf Benchmark.innerBenchmarkLoop 84.7%
YourKit java.lang.String.equals 23.4% YourKit Sieve.benchmark 88.4%

Mandelbrot Storage
Async List.isShorterThan 99.6% Async Storage.buildTreeDepth 42.6%
honest-profiler List.isShorterThan 98.0% honest-profiler Storage.buildTreeDepth 40.7%
JavaFlightRecorder List.isShorterThan 100.0% JavaFlightRecorder Storage.buildTreeDepth 45.1%
JProfiler List.isShorterThan 99.7% JProfiler som.Random.next 99.5%
Perf List.tail 99.0% Perf java.util.Arrays.setAll 87.5%
YourKit List.isShorterThan 99.5% YourKit java.util.Arrays.setAll 42.1%

NBody Towers
Async nbody.NBodySystem.advance 42.3% Async Towers.pushDisk 35.3%
honest-profiler nbody.NBodySystem.advance 40.9% honest-profiler Towers.pushDisk 33.8%
JavaFlightRecorder nbody.NBodySystem.advance 41.0% JavaFlightRecorder Towers.pushDisk 38.2%
JProfiler nbody.NBodySystem.advance 99.2% JProfiler Towers.moveDisks 94.2%
Perf nbody.NBodySystem.advance 47.7% Perf Towers.popDiskFrom 72.5%
YourKit nbody.NBodySystem.advance 44.5% YourKit Towers.pushDisk 33.0%
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