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Thanks to partial evaluation and meta-tracing, it became practical to build language implementations that
reach state-of-the-art peak performance by implementing only an interpreter. Systems such as RPython and
GraalVM provide components such as a garbage collector and just-in-time compiler in a language-agnostic
manner, greatly reducing implementation effort. However, meta-compilation-based language implementations
still need to improve further to reach the low memory use and fast warmup behavior that custom-built systems
provide. A key element in this endeavor is interpreter performance. Folklore tells us that bytecode interpreters
are superior to abstract-syntax-tree (AST) interpreters both in terms of memory use and run-time performance.

This work assesses the trade-offs between AST and bytecode interpreters to verify common assumptions
and whether they hold in the context of meta-compilation systems. We implemented four interpreters, each
an AST and a bytecode one using RPython and GraalVM. We keep the difference between the interpreters as
small as feasible to be able to evaluate interpreter performance, peak performance, warmup, memory use, and
the impact of individual optimizations.

Our results show that both systems indeed reach performance close to Node.js/V8. Looking at interpreter-
only performance, our AST interpreters are on par with, or even slightly faster than their bytecode counterparts.
After just-in-time compilation, the results are roughly on par. This means bytecode interpreters do not have
their widely assumed performance advantage. However, we can confirm that bytecodes are more compact in
memory than ASTs, which becomes relevant for larger applications. However, for smaller applications, we
noticed that bytecode interpreters allocate more memory because boxing avoidance is not as applicable, and
because the bytecode interpreter structure requires memory, e.g., for a reified stack.

Our results show AST interpreters to be competitive on top of meta-compilation systems. Together with
possible engineering benefits, they should thus not be discounted so easily in favor of bytecode interpreters.
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1 INTRODUCTION
Interpreters are often the first choice when implementing a new language and even established
languages such as Java, JavaScript, Ruby, and Python rely on interpreters. This is because interpreters
are relatively easy to implement, debug, and experiment with. Moreover, they can be memory
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efficient, and may execute code immediately, which becomes important when using a just-in-time
compiler on applications with millions of lines of code.
With meta-compilation systems such as RPython [Bolz et al. 2009] and GraalVM [Würthinger

et al. 2017], interpreters also became the main means of implementing a language when one wants
to use existing just-in-time compilers, garbage collectors, multi-threading support, tooling [Van de
Vanter et al. 2018], and language interoperability [Grimmer et al. 2018]. Being able to reuse the
hundreds of person years of engineering effort that went into systems such as the HotSpot JVM,
GraalVM, and V8 JavaScript, would benefit a large number of language projects.
While GraalVM, with its partial evaluation approach combined with just-in-time compilation,

allows language implementations to reach peak performance that is comparable with V8 (see
Section 5.3), it can not yet compete with custom-built systems when it comes to memory use and
warmup performance. Given these memory and warmup issues, the use of abstract-syntax-tree
(AST) interpreters for some of the language implementations on top of GraalVM has been criticized,
because “everyone knows that bytecode interpreters are faster.”
However, on meta-compilation systems, this generally accepted truth may not hold given the

constraints and opportunities of such systems. To carefully study the trade-offs between interpreter
designs, we implemented four interpreters: an AST and bytecode interpreter each on top of both
RPython and GraalVM. The interpreters are as similar as possible to each other to facilitate
direct comparison, while exploiting some minor performance opportunities where available (see
Section 4.4). By investigating AST and bytecode interpreters on both RPython and GraalVM, our
conclusions will more likely generalize to other meta-compilation systems, too.
The interpreters implement the SOM (Simple Object Machine) language [Haupt et al. 2010],1 a

class-based dynamic language sharing many commonalities with languages such as Python, Ruby,
and Smalltalk (see Section 2.3). They implement many common interpreter-level optimizations,
including polymorphic inline caching, inlining of control structures, self-optimization and bytecode
quickening, supernodes and superinstructions, as well as optimizing object storage models and
storage strategies for arrays. Together with evaluating the interpreters using the AreWe Fast Yet
benchmarks [Marr et al. 2016], the use of SOM allows us to study a common core shared by many
languages, which makes it likely that our results generalize to other dynamic languages.

To assess the trade-offs between AST and bytecode interpreters, we compare interpreter perfor-
mance as well as just-in-time-compiled peak performance. We find that AST interpreters are on par
in run-time performance, and in some cases even moderately faster. Thus, bytecode interpreters do
not have the generally expected advantage on top of meta-compilation systems. When looking at
the overall memory use, we even find that bytecode interpreters have drawbacks because boxing
avoidance is not as applicable, and their interpreter structure requires additional allocations. How-
ever, we can also confirm that bytecodes are more compact in memory, which is important for large
codebases. But, this benefit narrows when the code is executed and collects profiling information.

For completeness, we also assess the warmup behavior and the performance impact of optimiza-
tions that improve AST or bytecode performance.

The contributions of this paper are:
(1) the design of an experimental methodology to identify run-time performance and memory

usage trade-offs between AST and bytecode interpreters
(2) the implementation of PySOMAST, PySOMBC, TSOMAST and TSOMBC to compare the inter-

preters on top of RPython as well as GraalVM
(3) an analysis that shows that bytecode interpreters cannot be assumed to be faster on top of

current meta-compilation systems
1https://som-st.github.io/
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2 BACKGROUND
This section sketches the techniques used for the AST and bytecode interpreters, meta-compilation,
and SOM, i.e., the language used for our experiments.

2.1 Self-Optimizing AST Interpreters and Bytecode Interpreters
Interpreters are commonly distinguished based on the type of program representation they execute.
The most common approaches include abstract syntax trees and bytecodes.

class Literal:

def constructor(value):

self.value = value

def execute(frame):

return self.value

class AddNode:

def constructor(child1 , child2 ):

self.child1 = child1

self.child2 = child2

def execute(frame):

return (child1.execute(frame)

+ child2.execute(frame))

tree = AddNode(Literal (1), Literal (2))

tree.execute(Frame ())

(a) A basic direct-style abstract-syntax-tree interpreter.
The Literal nodes represent values and the AddNode
adds the results of two subexpressions.

bytecodes = [PUSH_LIT , 0,

PUSH_LIT , 1, ADD]

literals = [1, 2]

stack = []

i = 0

while True:

bc = bytecodes[i]

i += 1

switch bc:

case PUSH_LIT:

stack.push(literals[i])

i += 1 # uses two bytes

case ADD:

val2 = stack.pop()

val1 = stack.pop()

stack.push(val1 + val2)

(b) A basic bytecode interpreter for a stack machine.
The bytecodes encode pushing literal values onto the
stack, and then add them with an ADD instruction.

Fig. 1. Pseudocode for interpreters adding the integers 1 and 2.

Abstract Syntax Tree Interpreters. An abstract syntax tree is a common program representation
derived from the output of a parser. It represents the code structure, but omits details not relevant
for a program’s semantics, e.g., whitespace and grammar elements such as statement terminators.
Software engineering courses may introduce AST interpreters when discussing the visitor

pattern [Gamma et al. 1994]. However, while vistor-style interpreters provides a lot of flexibility, e.g.
to have a visitor for pretty printing, one for execution, and perhaps another for program analysis,
the resulting performance when executing programs is not optimal.
For AST interpreters that aim for good performance, a more direct approach as sketched in

Figure 1a is preferable. Each AST node type provides an execute() method, which implements
the semantics of the language construct directly. For our addition example in Figure 1a, we have a
Literal node that represents, e.g., integer values, and an AddNode that implements the addition
semantics by first evaluating its subexpressions and then computing the sum.

Bytecode Interpreters. Inspired by hardware instructions sets, bytecode sets are virtual instruction
sets designed to be compact and linear program representations. An interpreter executes bytecodes
by iterating over them one by one in a fetch-decode-execute cycle, at least conceptually.
Figure 1b illustrates the principle with a basic interpreter that can push values on a stack and

add them. It shows a switch-case-style bytecode loop, where each case statement is a bytecode
handler implementing the semantics of the bytecode.
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Over the decades, bytecode interpreters have been highly optimized. The bytecode dispatch
itself for instance is often optimized with direct or indirect threaded code [Bell 1973; Ertl and Gregg
2003], which aims to change the loop structure so that jumps to the next bytecode handler are at
the end of each handler, increasing the likelihood that the CPU can correctly predict jump targets.

The machine design is also highly relevant for performance. Bytecode sets can choose a design on
a spectrum between pure register and stack-based approaches [Shi et al. 2008]. While the example
in Figure 1b is a classic stack machine with explicit stack operations, register-based designs may
have performance benefits [Shi et al. 2008; Zhang et al. 2022]. By caching the top-of-stack values,
one can design interpreters that are somewhere in-between the two approaches [Ertl 1995].
Selecting suitable instructions to be part of the bytecode set is performance-relevant as well.

Taking instruction selection a step further gives us superoperators [Proebsting 1995], which are
more commonly known as superinstructions [Piumarta and Riccardi 1998], combining multiple
bytecodes into one, reducing dispatch overhead and enabling more optimal bytecode handlers.
To improve interpreter performance for dynamic languages, one can use run-time feedback

to rewrite bytecodes, for instance based on the observed types [Brunthaler 2010a,b, 2021]. The
basic operators such as addition often have complex semantics in dynamic languages. For instance,
the ECMAScript specification2 defines eight steps, which include possible method calls and type
coercions. For such languages, quickening can replace a generic operation with a more specialized
one, e.g., replacing a generic ADD bytecode with ADD_INT, which only handles integers but can fall
back to the generic case when needed. This reduces the number of checks at run time and the code
complexity of bytecode handlers, which may have secondary effects such as a more effective use of
instruction caches.

AST versus Bytecode. It is standard practice that the first major optimization one can implement
for an AST interpreter is to turn it into a bytecode interpreter. The linearized representation is
more compact in memory than an AST, making iterating over bytecodes more efficient.

However, the work on self-optimizing AST interpreters [Würthinger et al. 2012] enables ASTs to
benefit from run-time feedback, in a way similar to bytecode quickening. To optimize a complex
and generic AddNode for a language such as JavaScript, the node would replace itself in the AST
with one designed specifically for integer addition. In case something other than integers is added,
it can then rewrite itself to the generic version to support the language correctly. Compared to
bytecode quickening, self-optimizing AST interpreters have more flexibility. Since the AST is
represented as a tree of node objects connected by pointers, rewriting can easily introduce a more
complex structure if needed, for instance, to cache values. To simplify the implementation of such
interpreters, GraalVM provides the TruffleDSL, which enables the concise implementation of many
common patterns [Humer et al. 2014].
Many of the optimizations for such interpreters need to cheaply confirm a pre-condition at

run time, for instance, that the values being added are integers. Qunaibit et al. [2018] perform a
high-level analysis that allows to combine such guards, i.e., pre-condition checks, into megaguards,
which may reduce the need to repeatedly check the same precondition in an interpreter.

Not all classic interpreter optimizations are however directly useable when building on top of a
meta-compilation framework, and Section 4.2 will detail the optimizations used in this study.

2.2 Meta-Compilation
While interpreters are easy to implement, many applications need just-in-time (JIT) compil-
ers [Aycock 2003] to reach the desired performance. For many languages, one can likely build a

2Standard ECMA-262 Edition 5.1: The Addition operator , Ecma International, https://262.ecma-international.org/5.1/#sec-11.6.1
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baseline JIT compiler with moderate effort. However, highly optimizing JIT compilers, as known
from Java and JavaScript virtual machines, take hundreds of engineering years of effort.

Meta-compilation reduces the individual implementation effort by making just-in-time compilers
reusable and independent of any particular language. RPython and GraalVM are the main systems
in this space. Both approach the problem by compiling the executing program together with the
interpreter that is executing it. This combination provides the necessary specialization opportunities
to produce efficient native code that rivals custom-built state-of-the-art JIT compilers.

2.2.1 RPython: A Tracing Meta-Compiler. While most JIT compilers choose frequently executed
methods as their compilation units, tracing JIT compilers [Bala et al. 2000; Gal et al. 2006] use the
trace of a concrete execution path as their compilation unit typically starting at a loop header or a
method entry.
The RPython framework [Bolz et al. 2009; Bolz and Tratt 2013] uses tracing-based JIT compila-

tion to enable the meta-compilation of interpreters. It is known for PyPy, a widely used Python
implementation with JIT compilation. RPython interpreters use annotations to indicate for instance
which loops are relevant for JIT compilation, which is then used by RPython to add a JIT compiler
and garbage collection. While PyPy uses bytecodes, AST interpreters work also well on RPython.

To reach optimal performance, interpreter implementers can use annotations, typically to distin-
guish application-level from implementation-level loops. We would for instance mark application-
level loops and the start of user functions as places where it is beneficial to start tracing. We
can also indicate that a value in a trace is to be considered a constant, which allows subsequent
optimizations. Other annotations include hints to unroll loops or to allow the compiler to assume
that a function is side-effect-free.
From an engineering perspective, we found this approach to be highly effective [Marr and

Ducasse 2015]. We were able to build an interpreter with comparably low effort and few code
adaptations, the result being a language implementation with good peak performance. However,
GraalVM, which we discuss next, provided better peak performance.

2.2.2 Graal: A Partial-Evaluation-based Meta-Compiler. Partial evaluation [Futamura 1971] uses
partial input to derive an optimized program. The resulting program contains only computations
that depend on the missing input. When the partial input is user code and our interpreter is the
program to be partially evaluated, then the result is a compiled version of the user code, which
can execute efficiently once the user input is provided. This is considered to be the first Futamura
projection, effectively introducing the notion of meta-compilation.
GraalVM uses this approach to partially evaluate an interpreter for a user program, effectively

just-in-time compiling it [Würthinger et al. 2017, 2013]. Instead of using tracing, the Graal compiler
starts from methods and uses aggressive inlining to determine compilation units. This has the
drawback that it cannot rely directly on the values of a concrete execution, as RPython can. Instead,
GraalVM relies on interpreters to collect information about types, values, and taken branches while
executing, and for them to encode it in the program representation, i.e., the AST, bytecode, and
other profiling data structures. Interpreters would typically use self-optimizations, quickening, and
similar forms of profiling. The Graal compiler will use the information during partial evaluation to
compile an optimized program, eliminating most if not all of the interpreter code in the process.

GraalVM can be used either on top of the HotSpot JVM, or ahead-of-time-compiled with GraalVM
Native Image [Wimmer et al. 2019]. The native image mode is similar to how RPython would
typically be used, and results in a native binary of the interpreter.

In previous work [Marr and Ducasse 2015], we found that interpreters for partial-evaluation-base
compilation required more engineering effort, since they need to collect profiling data explicitly.
However, as mentioned, GraalVM also had higher peak performance compared to RPython.
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2.3 Simple Object Machine (SOM)
Our experiments are based on the Simple Object Machine language (SOM), a class-based language
and minimal Smalltalk dialect [Haupt et al. 2010]. It is dynamically typed, has class inheritance,
closures, and non-local returns. It thus shares many implementation and especially optimization
challenges of more commonly used languages such as JavaScript, Python, and Ruby, without
reaching their complexity, which would make this study infeasible.
For this study, we adapted two existing SOM implementations PySOM and TSOM, which both

support the full SOM language. PySOM is built on top of RPython and comes with a self-optimizing
AST interpreter as well as a bytecode interpreter that supports quickening. TSOM is built on top of
GraalVM and uses the TruffleDSL to implement a self-optimizing AST interpreter and has a custom
bytecode interpreter that utilizes many of the self-optimization techniques, too.
All four interpreters reach peak performance similar to V8 using the AreWe Fast Yet bench-

marks [Marr et al. 2016] as we show in Section 5.3. Thus, the meta-compilation systems of RPython
and GraalVM are effective, and the SOM implementations are fast enough to enable a study of
trade-offs between bytecodes and ASTs in the context of such systems.

3 METHODOLOGY TO COMPARE AST AND BYTECODE INTERPRETERS
Our goal is to characterize the performance trade-offs of AST and bytecode interpreters in the
context of meta-compilation systems. We focus on run-time performance and memory usage, since
these are the two key aspects commonly named when preferring bytecode over AST interpreters.
Since meta-tracing and partial-evaluation-based meta-compilation have different trade-offs [Marr
and Ducasse 2015], we use both platforms to get a complete picture. Before detailing our SOM
implementations in Section 4, we motivate the performance aspects we are going to compare. We
will discuss our measurement methodology as part of the results in Section 5.

3.1 Interpreter Performance
The perhaps most important aspect for us is the run-time performance of the interpreters before just-
in-time compilation. Here the interpreters have the highest impact on the observable performance.
For a wide range of workloads, the interpreter performance is crucial for the user experience.

This includes highly interactive and often short-running applications such as scripts on websites,
many short-running command-line scripts, large-scale applications with frequent redeployments
many times a day [Ottoni and Liu 2021], and perhaps most important for the acceptance of new
language implementations: the run time of unit test suites.

To assess interpreter performance, we compile the interpreters to stand-alone binaries without JIT
compilation support. Both RPython and GraalVM are able to produce binaries with the interpreters
ahead-of-time compiled for best interpreter performance.

3.2 Peak Performance
In the context of meta-compilation systems, we are also interested in the best possible performance
that our language implementations can achieve. Thus, we want to assess the performance with JIT
compilation enabled, and the benchmarks running long enough to be fully compiled.

This peak performance is especially relevant for long-running applications. However, even short-
running applications may benefit when the executed code is compiled early on, and thus, can
reduce the overall response time.
To assess the best possible, i.e., peak performance, we use both RPython and GraalVM with

JIT compilation enabled. In the case of RPython, this is a native binary of the interpreter with
the JIT compiler included as well. For GraalVM, we run TSOM on top of the HotSpot JVM using
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the Graal compiler for JIT compilation of the SOM programs. This configuration is recommended
to gain the best performance overall, since for instance the garbage collector and other runtime
elements of HotSpot are more sophisticated than in the ahead-of-time compiled binary we used to
assess interpreter performance. However, using HotSpot may have a negative impact on warmup
performance, because TSOM starts executing like any other Java program, which means first it is
executed by HotSpot’s Java interpreter and the TSOM interpreter code itself may be JIT compiled
by HotSpot before the Graal compiler can JIT compile the running SOM program.

Both RPython and GraalVM rely on activation counters that once they reach a threshold trigger
compilation. For RPython, we verified that the standard thresholds lead to a full compilation of the
used benchmarks. The GraalVM’s runtime system is more sophisticated, which however also makes
it less predictable. To ensure full compilation, we adapted its settings by reducing the compilation
threshold, disabling multi-tier compilation, and dynamic compilation thresholds.

While there is no guarantee that an arbitrary program can reach peak performance [Barrett et al.
2017], we adapted compilation settings and we execute the benchmarks long enough to ensure that
all parts are compiled.

3.3 Warmup Performance
The phase between starting execution and reaching peak performance is the warmup phase.

In RPython, tracing and compilation happen on the same thread as the program execution. Thus,
compilation stalls application progress and may be noticeable in the warmup behavior. RPython
starts to trace and compile a loop after 1039 iterations. For functions, the threshold is higher at
1619 activations. This will give hot loops, which are likely more relevant for performance, a chance
to compile before individual functions, typically resulting in better overall performance.
GraalVM supports background compilation, has a multi-tiered compiler, and uses a system of

dynamic compilation thresholds, which is meant to carefully balance the compilation work with
the resources needed by the application. In contrast to RPython, the background compilation
ensures that the application can continue executing, while another thread compiles the function
that reached the compilation threshold. To measure warmup on this system, we run both on top of
Hotspot and the ahead-of-time compiled version. The goal here is to see whether the difference
between AST and bytecode interpreters has an influence on the warmup behavior in either system.
We also use the ahead-of-time compiled version, since here the interpreter performance is best,
and has a higher impact during warmup.

3.4 Memory Usage
Since our AST interpreters represent programs as trees of objects, we need to assess the memory
overhead compared to the bytecode interpreters. A bytecode interpreter encodes programs into
an array of bytes, which avoids the cost of object headers and machine-word-sized pointers.
Consequently, bytecodes should be more compact. However, our interpreters also collect profiling
data in form of lookup caches. TSOM’s bytecode interpreter also uses the TruffleDSL-generated
nodes for basic operations, which keep additional profiling information (see Section 4.4). Thus,
in our bytecode interpreters designed for meta-compilation, the memory use of the program
representation is not simply the number of bytes emitted by the bytecode compiler.

In addition to characterizing the difference between program representations, memory usage is
also relevant in practice. When hosting applications in the cloud, memory is a direct cost. Moreover,
since the program representation is subject to garbage collection, it may also have a secondary
run-time cost by increasing the time garbage collection takes.
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With meta-compilation and garbage collection in the mix, measuring all impact of the differences
of the program representation is not straightforward. For instance, tracing and partial evaluation
will be affected, and thus may use different amounts of memory.

To have a single consistent metric for both systems, we will use the maximum resident set
size (RSS). RSS corresponds to the maximum heap size the language implementation requested.
It thus is an overapproximation of all memory used by the interpreters. In programs that use
large working memory, the impact of the program representation is naturally de-emphasized.
However, for programs that load many lines of code, we will get a clearer picture of the cost of
the program representation. Thus, while not precise, the maximum RSS reflects what users of a
language implementation may care about.

Overall Impact. To get an impression of the high-level impact on memory usage, we measure the
maximum RSS for the benchmark execution on the interpreter, as well as for peak performance. This
will give us an intuition of the practical differences. However, especially for TSOM, the numbers
are not only reflecting the difference in program representation, but also the difference between
optimizations applied to the interpreters. As discussed in Section 4.2.1, TSOMAST is able to perform
boxing elimination to a higher degree than TSOMBC, which is reflected in the memory usage.

Impact of the Program Representation. To more clearly measure the memory used by program
representation, we need to dominate the overall memory use with it. Unit tests are a common
extreme case for many language implementations, since much of the code is executed exactly once.

To measure the impact of the program representation, we thus compare the memory use between
different sizes of unit test suites. Specifically, we measure the memory use of the interpreter for
running 1 to 100 copies of the SOM unit tests. For 100 copies, this corresponds to 2,528 files
with 197,756 LOC in total, excluding comments and blank lines. With this setup, memory use is
dominated by the program representation. While the unit tests allocate memory during execution,
these objects are garbage collected almost immediately, since the unit tests do not hold on to them.

A second version of this experiment merely loads the code. Thus, memory is allocated to represent
the program, but neither run-time objects nor profiling data is allocated, providing a lower bound
for code that is not executed.

With this approach, we can minimize the impact of other allocations, approximating the memory
used to represent the program as AST or bytecode.

3.5 Impact of Optimizations
The optimizations we applied to the SOM interpreters fall into two broad categories: structural
optimizations to essentially short-cut the generic language semantics in well-known cases, and
optimizations that use run-time feedback and thus profiling to improve performance. This profiling
can be beneficial even in the interpreter, or only for JIT compilation.
By assessing the performance impact of a number of optimizations, we want to gain a better

understanding of how performance relates to the program representation and whether any possible
additional memory use may translate into better run-time performance.
As a secondary goal, we also want to gain a better understanding of which optimizations are

most important for performance, which may help fellow language implementers to focus their
efforts in the context of meta-compilation systems and depending on whether they aim for an AST
or bytecode interpreter.
However, measuring the impact of individual optimizations is nontrivial. Optimizations can

interact in unpredictable ways. Some optimizations may even be relevant at the beginning, but
become later less important because they are redundant in some way. Assuming the goal is overall
best performance, we take our fully optimized interpreters and remove specific optimizations to
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identify their impact on the final performance of the systems. Thus, for each optimization under
investigation, we have an interpreter that removes it completely to assess its impact.

3.6 The AreWeFast Yet Benchmarks
For the experiments, we will rely on the AreWe Fast Yet (AWFY) benchmarks [Marr et al. 2016].
While they were designed for comparing the performance across languages, they are also known to
exercise the common language abstractions of object-oriented languages. They include five macro-
benchmarks, which behave similar to parts of applications, and nine micro-benchmarks, which
focus on narrow aspects of runtime systems. This gives us sufficient breadth for the experiments.

Since they are designed for cross-language benchmarking, they also enable us to contextualize the
performance by comparing to Node.js and OpenJDK. Their key limitation is that they are relatively
small, and with most benchmarks, the results may not generalize to any particular application.

4 OVERVIEW OF THE SOM IMPLEMENTATIONS
The experimental subjects for this study are the four SOM interpreters that we will refer to for
brevity as TSOMAST, TSOMBC, PySOMAST, and PySOMBC, distinguishing the abstract-syntax-tree
(AST) and bytecode (BC) variants. Since TSOM is based on GraalVM using partial evaluation, and
PySOM builds on RPython using meta-tracing, we cover both meta-compilation approaches.
In preparation of the experiments sketched in Section 3, we give an overview of the four

interpreters, detail the optimizations, and discuss relevant differences between the implementations.

4.1 High-level Overview of the SOM Interpreter Implementations
For both TSOM and PySOM, the AST and bytecode interpreters are part of the same codebase,
and the interpreter type can be chosen at compilation time. Since our experiments focus on the
difference between the program representation, we aim to share as much as possible between the
implementations that is independent of the program representation. This includes for instance the
implementation of built-in functions such as loading of files and producing output. They also share
the same object model and storage strategies as discussed in Section 4.2.5.

4.1.1 Abstract Syntax Tree. As previously mentioned, TSOM is built on top of the Truffle framework
and uses the TruffleDSL to implement a self-optimizing AST interpreter. PySOM on the other hand,
is implemented in RPython, which gives us a bit more freedom but also does not provide the
conveniences of the TruffleDSL. In practice, this means we often keep the RPython interpreter
simpler, but without sacrificing performance, as we will see in Section 5.2.
A basic AST interpreter for SOM would start out with the fine-grained AST nodes for the

language features. This includes nodes for reading and writing method arguments, local variables,
and object fields. It also includes nodes for reading global variables, literals, instantiating blocks, and
sending messages, i.e., looking up and activating methods on a receiver object, as well as nodes for
triggering and handling non-local returns. Each node has a single purpose and implements exactly
one aspect of the language. This means, based on these fine-grained basic nodes, all programs
can be represented. Back in Section 2.1 we sketched the Literal node in Figure 1a, which merely
stores a literal values such as a number of string, and returns it when executed. A full list of nodes
is given in Appendix A.

4.1.2 Bytecode. The original SOM interpreter had a bytecode set with merely 16 instructions3
similar to the AST nodes mentioned above. This includes a bytecode instruction to duplicate the
top of stack, different bytecodes read or write method arguments, local variables, and object fields.

3https://github.com/SOM-st/som-java/blob/original/src/som/interpreter/Bytecodes.java
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It also has bytecodes to push globals, literals, and new block objects. It has a bytecode for message
sends with normal lookup semantics, and one with lexically-bound semantics to activate the method
in the superclass. Local and non-local returns are the final two bytecodes.

To optimize the bytecode set, we introduced variants that directly encode certain parameters. To
give two examples, pushing self on the stack, i.e., the first method argument is very common and
thus, we introduced PUSH_ARG0. Pushing the nil value is also common, and done with a specialized
bytecode PUSH_NIL. These specialized bytecodes are more compact, because they avoid the extra
byte to encode the argument, and at the same time, they can be slightly more efficient, because
for instance PUSH_NIL does not need to load the value from the literal array but pushes a constant
directly to the stack. The full set of bytecodes is listed in Appendix B.

4.2 Optimizations Common to All Four Interpreters
We first compare optimizations present in all AST and bytecode interpreters, so that we may later
analyze their individual effects in Section 5.6. Our general approach is to have the interpreters as
similar as practical, which also includes optimizations.

4.2.1 Polymorphic Inline Caching. Hölzle et al. [1991] introduced polymorphic inline caches (PICs),
which are still highly relevant today [Kaleba et al. 2022]. PICs store the lookup results at a given
call site, avoiding the lookup cost in the interpreter, and for GraalVM, it enables inlining across
guest-language methods. While this is not strictly needed for RPython with its meta-tracing, the
PIC avoids unnecessary repeated lookups during tracing, too.
In both TSOM and PySOM, the maximum number of entries in the polymorphic cache is six.

After this limit is exceeded, the call-site is considered megamorphic, the cache is discarded, and a
lookup has to be done before each call.

4.2.2 Global Variable Caching. The SOM language has the notion of global variables, which are
used for instance to represent class objects, but can also contain arbitrary values. Globals can be
read like normal variables and are mutable via a hash-table-like reflective API. Furthermore, access
to undefined globals triggers a reflective handler, which in the standard case will attempt to load a
class with that name.

Since in most cases globals are only modified once, typically on loading a class or setting an initial
value, we optimize them so that the compiler can treat them as constants, which is for instance
important to efficiently instantiate objects. In case a global is mutated, compiled code using them
will be invalidated to ensure correct semantics.

In the AST interpreter, access to globals is implemented with the Global nodes. For true, false,
and nil, we have nodes with the corresponding value. For other globals, they start out in an
uninitialized state, and rewrite themselves to a CachedGlobal after looking up the global.
The bytecode is very similar and has PUSH operations. Though, we only added PUSH_NIL for

literals, since true and false are very rare. For normal globals, PUSH_GLOBAL will rewrite itself to
Q_PUSH_GLOBAL, which uses the result of the lookup.

4.2.3 Inlining Control Structures. Since SOM is a Smalltalk derivate, it uses classes and polymorphic
methods to provide control structures. Conditional branches are realized as polymorphic methods
named #ifTrue:, #ifFalse:, and #ifTrue:ifFalse: on the True and False classes, evaluating
given lambdas when appropriate. Similarly, loops are methods on number and lambda classes.
For instance, Integer has the #to:do: method, with the receiver being the lower bound, the first
argument the upper bound, and the second argument the lambda representing the loop body.

While this design is a testament to the power of late binding, it makes achieving good performance
more challenging. In PySOM and TSOM, we optimize control structures by inlining them on the
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AST or bytecode level. Thus, PySOMBC and TSOMBC will for instance translate calls to methods
for conditional branches into bytecodes when they have literal lambdas, and inline the lambdas
into the method with the call. This avoids method call overhead for the lambdas, and exposes the
control flow more directly to the meta-compilers, which is expected to yield better performance.
The bytecode interpreters support this inlining for the methods for conditional branches, the #and:
and #or: methods on booleans, and while loops. The counting #to:do: loop was not included
since it did not yield the desired performance. To support the inlining, we added the JUMP bytecodes
listed in Appendix B.
The AST interpreters inline the same methods as the bytecode interpreters, but also #to:do:.

During inlining, method call nodes are replaced by specific nodes for the control flow structures,
e.g., an InlinedIfElse node (see Appendix A). The lambda arguments are inlined into the calling
method on the AST level, too.

4.2.4 Lowering of Basic Operations. As with control structures, basic operations such as arithmetic
operations and comparison operators are provided as methods on classes. For example, the Integer
and Double classes have methods for +, -, <, >= etc. Some of these methods are implemented as
primitives directly in the interpreter. Others, including the >= methods, are implemented in the
SOM code library as normal methods relying on primitive methods such as the one for <.
A basic SOM implementation would treat all these operations as normal polymorphic method

calls, which is elegant but, because of the method call overhead, not particularly fast. PySOM and
TSOM optimize these methods to avoid the call overhead, and they also provide primitive versions
for methods implemented in SOM’s core library to improve performance.
Since TSOMAST is using the TruffleDSL, it also uses what we call eager operations replacement.

Instead of relying on the polymorphic inline cache to resolve operations, we directly replace
standard method call nodes for operations such as + and >= with AST nodes that specialize on
argument types and implement the necessary semantics. This avoids the method call overhead
and enables boxing elimination on the statement level TSOMAST, because statements that work on
integers can use code paths that are consistently typed for integers, without having to fall back on
a representation that encapsulates the integer value in an object.
Since RPython does not have the TruffleDSL, and the eager replacement is not applicable to

bytecode interpreters, PySOMAST, PySOMBC, and TSOMBC do not use eager operations replace-
ment. However, the extra flexibility of RPython allows us to handle activation of basic operations
differently without extra overhead. Furthermore, all interpreters benefit from the primitive versions
of SOM library methods.

4.2.5 Optimizations Orthogonal to ProgramRepresentation. PySOMand TSOM implement a number
of other optimizations to reach the performance level of Node.js. Though, since they are orthogonal
to the program representation, we will only briefly sketch the object model and use of storage
strategies as the most important ones, and do not assess their performance impact.

Unboxed Number Storage in Object Fields. The objectmodel takes inspiration frommaps [Chambers
et al. 1989] and the object model used by GraalVM [Wöß et al. 2014]. Its main benefit is unboxed
storage of SOM integer and double values, which is especially beneficial in compiled code. Though,
since SOM is a class-based language, the object model is simplified to avoid the need of a transition
tree and reduce the problem of high map-polymorphism. Instead, each class tracks only the latest
layout, i.e., mapping between logical fields and physical storage. Objects are transitioned to the
latest layout lazily, avoiding a global impact when the layout changes.

Unbox Storage in Arrays. Based on the work on storage strategies [Bolz et al. 2013; Pape et al.
2015], PySOM and TSOM implement storage strategies for arrays. They currently support SOM

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 233. Publication date: October 2023.



233:12 Octave Larose, Sophie Kaleba, Humphrey Burchell, and Stefan Marr

integers, doubles, and booleans. Similar to the object model, this avoids storing values in their
boxed form, which is especially beneficial in compiled code. In addition, they also support a strategy
for empty arrays, i.e., arrays that store only nil values. In this case, the array only stores the length,
which avoids allocating memory when not yet needed.

4.3 Optimizations Applied to a Subset of Interpreters
Because of the differences in implementation platform, and between AST and bytecode, the fol-
lowing optimizations are only available in some interpreters. We will detail key differences in
Section 4.4. Note that superinstructions, quickening, and supernodes are nominally different op-
timizations. However, we apply them in a way that the resulting interpreters are as similar as
possible to ensure fairness in the comparison.

4.3.1 Superinstructions. Superinstructions [Piumarta and Riccardi 1998], are combinations of mul-
tiple bytecode instructions into a single instruction that avoid dispatch overhead, and may have a
more optimal implementation than the separate bytecodes could have.
In SOM, we use a few superinstructions that we identified as common based on bytecode

profiles. This includes INC and DEC bytecodes, which increment or decrement the top of stack value,
INC_FIELD and INC_FIELD_PUSH, which increment the value stored in a field, and possibly push
the result onto the stack, as well as RETURN_SELF or RETURN_FIELD_n, which combines taking the
self value or reading a field from self with returning either at the end of a method. Getters are
perhaps the most common methods that end with reading a field.
As the above examples illustrate, superinstructions can be arbitrarily complex. For instance,

INC_FIELD_PUSH would need to be expressed with a sequence of five bytecodes from the basic
SOM bytecode set as can be seen in Figure 2.

PUSH_FIELD 0 # push the field value onto the stack

PUSH_CONSTANT 0 # push 1 by reading from the literal array at index 0

SEND + # send the + message to add the two values

DUP # duplicate the top of stack

POP_FIELD 0 # pop the top of stack , and write into the field

Fig. 2. Sequence of five basic bytecode instructions that is equivalent to the INC_FIELD_PUSH superinstruction.

4.3.2 Quickening. As mentioned in Section 2.1, quickening [Brunthaler 2010a] is a technique to
incorporate run-time feedback into bytecode, which is especially useful for dynamic languages
such as SOM. In PySOMBC and TSOMBC, we use it for instance for the method-call bytecodes.
The initial bytecodes initialize the polymorphic inline caches on first execution, and then rewrite
themselves to quickened versions Q_SEND[_n], which merely use the caches. Similarly, as discussed
in Section 4.2.2, we use quickening for access to global variables and introduced the Q_PUSH_GLOBAL
bytecode. For these examples, quickening avoids run-time checks, and improve the performance of
method calls and access to globals. In the AST interpreters, we use self-optimization [Würthinger
et al. 2012], which is very similar to quickening in that it also relies on rewriting at run time,
however, because of the tree structure of ASTs, it is more flexible.

4.3.3 Supernodes. This concept of a supernode [Larose et al. 2022] is our approach for replicating
superinstructions in an AST interpreter. Thus, a supernode combines multiple AST nodes into one.
The benefit over a superinstruction is the ability to merge arbitrary partial subtrees, giving a high
degree of flexibility to parameterize a supernode. The main benefit is to reduce the number of node
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objects needed to express a program, which lowers memory use since we avoid a Java object header
and a parent pointer. It also gives more opportunities for a compiler optimizing a node’s code, and
reduces the dispatch overhead among nodes.

We applied this optimization to TSOMAST and implemented supernodes based on performance-
sensitive patterns identified in the interpreter. One of the supernodes we added is similar to the
INC bytecode, the IntInc supernode. It is applied in situations where we have an addition of a
literal integer to a value obtained from an arbitrary subexpression. This avoids the extra node for
the literal value and specializes the addition to support only integers. It also avoids the virtual call
to the execute() method of the literal node, as illustrated in Figure 3.

class IntInc:

def constructor(value , child):

self.child = child # arbitrary subexpression

self.value = value # integer constant

def execute(frame):

return child.execute(frame) + value # avoids one virtual call to execute ()

Fig. 3. The IntInc node combines a Addition node, specializes it to integers, and stores an integer value for
the addition. Handling of misspeculaltion and deoptimization is omitted for brevity.

Another set of supernodes fuses method call nodes with an argument read node for the receiver,
e.g., with the BinaryArgSend node. We also added common comparisons with literal values, which
simplifies the comparison logic since the literal value is statically known. Our supernodes for a few
selected arithmetic expressions include squaring a value and squaring a value read and stored back
into a field, which enables us to significantly reduce redundant type checking for this pattern.

4.4 Overview of Differences Between the Interpreters
Given the constraints and guidance provided by RPython and GraalVM with its TruffleDSL, there
are differences between the interpreter implementations that may lead to different trade-offs.
GraalVM provides a more strict framework requiring the use of a predetermined calling con-

vention between guest-language-level methods and a provided Frame abstraction that does type
profiling of local variables, including boxing avoidance for primitive values. For the TSOM in-
terpreters, this means calling between SOM methods has a relatively high overhead because an
Object[] array needs to be allocated to pass method arguments, and the Frame structure needs to
be constructed, which involves multiple objects and arrays.

Since RPython does not provide and require such a strict framework, we had more leeway, and
represent method activations with a simple array. Similarly, there is no calling convention, which
allowed us to specialize the calls to methods with one, two, and three arguments by providing
explicit methods for it, and only requiring an allocation for an array to pass arguments when four
or more arguments are needed, which happens much less frequently.
On the other hand, the TruffleDSL makes it straightforward to provide specializations for

primitive values such as long and double, which enables us to avoid boxing of such values on
the statement level in the TSOMAST interpreter [Humer et al. 2014; Würthinger et al. 2012]. This
enables nested expression nodes to pass temporary values between them as unboxed values.

In PySOM, we do not do any such specializations and all values are always boxed, i.e., stored in
an object, except when storing a value in a SOM object or array (see Section 4.2.5).
The TSOMBC interpreter does not benefit as much from avoiding of boxing since the bytecode

structure does not directly benefit from the TruffleDSL-provided specializations, and temporary

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 233. Publication date: October 2023.



233:14 Octave Larose, Sophie Kaleba, Humphrey Burchell, and Stefan Marr

results of expressions are stored in an explicit stack, which is realized as an Object[] array, and
thus, requires the boxing of long and double values. However, the TSOMBC interpreter still uses
the same node objects for basic operations that the TSOMAST interpreter uses. This allows us to
benefit from the profiling built into these nodes, to facilitate partial evaluation.

5 RESULTS OF COMPARING AST AND BYTECODE INTERPRETERS
We follow the high-level methodology outlined in Section 3 to identify the trade-offs between the
different program representations. Before analyzing the results, we briefly sketch how we measure
and which statistics we report.

5.1 Measurement Methodology and Reported Statistics
All experiments were run on a system with Ubuntu 20.04.6 LTS (kernel 5.4.0-146), with two 6-core
Intel Xeon E5-2620 CPU at 2.40GHz, and with 16GB RAM. For the baseline comparisons, we use
Node.js 17.9 and JDK 20. TSOM is based on GraalVM development branch. PySOM uses RPython
from the version 7.3.11 release of PyPy.

We use ReBench [Marr 2023], in version 1.2, to configure the machine for benchmarking, and to
collect the results. ReBench instructs Linux to use the performance governor, disables Turbo Boost,
runs the benchmarks at the highest priority, and avoids scheduling other processes on the cores
used for benchmarking (CPU shielding). This is intended to reduce the measurement noise.
To measure interpreter performance, just-in-time compilation is disabled, and we start the

interpreter 100 times for a benchmark, and the benchmark harness measures how long one iteration
of the benchmark takes.
We generally report the median run time factor over a baseline as well as the minimum and

maximum to characterize the full range.
For measuring peak performance, the just-in-time compilers are enabled, and we start the

interpreter once, and the benchmarking harness measures the time of 2000 iterations. Thus, all
iterations execute in the same process, and benefit from the JIT compilation. We looked at the
over-time performance of all benchmarks, and used the last 1000 measurements for the statistics.
They are generally free from further compilation.

Since most experiments compare a set of benchmarks against a baseline, we report the median
ratio over a baseline. The results are depicted as boxplots on a logarithmic scale, which leads to a
more intuitive understanding of differences, since both a factor of 0.5 and 2 have the same physical
distance from 1 on the resulting plot.

5.2 Interpreter Performance
As discussed in Section 3.1, we start by assessing the run-time performance of our interpreters with
JIT compilation disabled. Figure 4 shows the results. We use Java as the baseline, as it performs
best overall. However, most interpreters have at least one benchmark that is faster than on Java.
For instance on Node.js, the Json parser benchmark takes only 33% of the time it takes on Java.
When we focus on whether AST or bytecode interpreters on top of meta-compilation systems

are faster, we see that the PySOM interpreters have very similar interpreter performance. The
median slowdown of PySOMAST compared to Java is 3.16× (min. 0.91×, max. 8.94×), while the
one for PySOMBC is 3.51× (min. 0.94×, max. 8.12×), and thus only slightly slower. However, the
difference on top of GraalVM is larger for our interpreters. TSOMAST is 3.07× (min. 0.90×, max.
7.07×) slower than Java, while TSOMBC is 4.96× (min. 1.18×, max. 8.59×)

Based on these results, we conclude that AST interpreters can be on par with bytecode interpreters
in run-time performance, and may even have an edge in some benchmarks and on some meta-
compilation systems.
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Fig. 4. Interpreter run-time performance, on a logarithmic scale, with Java as baseline. While TSOM and
PySOM are overall slower than the Java and Node.js interpreters, we can also observe that PySOMAST and
TSOMAST are faster than the bytecode versions. TSOMBC is the slowest interpreter overall.

5.3 Peak Performance
Since one of themain reasons to use ameta-compilation system is to benefit from the JIT compilation,
we look at the peak performance results in Figure 5. Here we omit the warmup phase, which we
will come back to in Section 5.4.
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Fig. 5. Peak performance with just-in-time compilation enabled, a logarithmic scale, with Java as baseline.
TSOMAST reaches the performance of Node.js, while the peak performance of the other implementations is a
little further behind.

We use again Java as the baseline, since it has the best overall performance. The median run time
of Node.js is about 1.92× (min. 0.92×, max. 3.19×) higher than Java.
From our implementations, TSOMAST is overall the fastest and takes about 2.29× (min. 1.00×,

max. 4.00×) more time than Java, which is roughly at the same level as Node.js since the range over
the benchmarks is well overlapping. TSOMBC is not far behind with 2.45× (min. 1.25×, max. 4.81×).

For PySOM, PySOMBC is the fastest implementation, taking about 3.12× (min. 1.28×, max. 165.13×)
more time than Java. This still overlaps well with Node.js, but has a few more benchmarks that do
not quite reach the same level of performance. PySOMAST reaches 4.35× (min. 0.96×, max. 18.19×).
A closer investigation shows that highly recursive benchmarks do not reach the same performance
as on other systems. Here, RPython’s trace-based compilation struggles to make the most optimal
decision of when to stop tracing, which is a known issue.4 While the bytecode version comes out
faster, this result is dominated by a more suitable recursion inlining threshold.
Overall, there does not seem to be a clear benefit for either AST or bytecode interpreters in

terms of peak performance. For TSOM, the results are arguably too close together, and for PySOM,
the particularly slow recursive benchmarks make a strong conclusion seem undesirable. However,
this in itself is a useful result. Even when focusing on peak performance, there does not seem to
4https://foss.heptapod.net/pypy/pypy/-/commit/928f810b36
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be a clear winner, which may allow us to make decisions in favor of one or the other program
representation based on other factors.

5.4 Warmup Behavior During JIT Compilation
As discussed in Section 3.3, we collected and analyzed the warmup data for TSOM on Hotspot
and the ahead-of-time-compiled interpreter, and PySOM. For brevity we only include plots for the
ahead-of-time-compiled systems. However, the results are similar for TSOM on top of Hotspot.
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Fig. 6. Performance of benchmark iterations over time for the TSOM interpreters as measured on the ahead-
of-time-compiled GraalVM Native Image. All data is normalized to the median of TSOMAST and shown with a
logarithmic y-axis. While we see performance difference between TSOMAST and TSOMBC, only the Richards
benchmark seems to display a noticeable warmup delay on TSOMBC.

We illustrate the data in Figure 6 and Figure 7, showing the iteration times for each benchmark
normalized to the median value of the baseline. For consistency, we chose the AST interpreter as
baseline. This approach preserves the over-time variations, while having a consistent goal value of
1 (or better), that implementations would want to achieve.

The main question we try to answer here is whether there is a notable difference in warmup
behavior between AST and bytecode interpreters. As can be expected from the peak performance
results (see Section 5.3), there are clear performance differences. However, we see neither for
TSOM nor PySOM any systematic differences in warmup behavior. On TSOMBC in Figure 6, we see
Richards has a longer delay before reaching the peak performance. However, none of the other
benchmarks show it as pronounced. On PySOM in Figure 7, we may have more benchmarks that
do not reach a similar performance, but this does not change after the shown 100 iterations either,
and as such is not a warmup difference.
Based on the available data, we cannot identify any systematic differences. Though, warmup

issues are typically more pronounced on larger applications, and the AreWe Fast Yet benchmarks
are not be large enough to trigger them.
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Fig. 7. Performance of benchmark iterations over time for the PySOM interpreters. All data is normalized
to the median of PySOMAST and shown with a logarithmic y-axis. While we see performance difference
between PySOMAST and PySOMBC, there does not seem to be a major difference in warmup.

5.5 Memory Usage
Besides run-time performance, memory use is the other major concern when it comes to program
representation. As discussed in Section 3.4, we assess the overall impact on memory use, as well as
on the program representation itself.

5.5.1 Overall Memory Impact. Figure 8 shows the maximum Resident Set Size (RSS) used by the
benchmarks. We show the data separately for TSOM and PySOM, each for the interpreter and with
JIT compilation. The numbers of the interpreter are expected to show a stronger effect if one is
there. The JIT compilers and their escape analysis may be able to reduce any additional allocation
during optimization.
For TSOM, we can indeed see a difference in Figure 8a. The benchmarks on TSOMBC seem to

use more memory. Figure 8c shows a similar trend, but not as clearly.
For PySOM, if there is any effect, the AST interpreter might use slightly more memory. However,

this is much less clear from the data.
When investigating the allocation profiles on TSOM, we found that the bytecode interpreters

allocate a significantly larger number of Long and Double values, because the TruffleDSL’s approach
to boxing avoidance does not translate directly to bytecode interpreters. We also noticed an increase
in the number of allocations of Object[] arrays. Since we need to reify the stack for our stack-based
bytecode, each method activation allocates an extra Object[] array, which for some benchmarks
leads to a significant increase in allocations. The last significant difference is the allocation of
Object[] arrays in the bytecode loop to pass arguments to method calls. In the AST interpreter
these allocations happen inside of execute() methods, which in some cases allows the compiler
to already avoid the allocation even in the interpreter. However, in the bytecode interpreter, this
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Fig. 8. Maximum Resident Set Size (RSS) used by the interpreters, on a logarithmic scale.

allocation happens in the bytecode loop, before passing it on to a polymorphic call site. This
prevents compilers to avoid the allocation. Thus, on top of GraalVM, the AST interpreters may
have some benefits in terms of memory usage, because boxing avoidance and code structure can
lead to fewer allocations.

On PySOM, we do not see such effects because we do not have statement-level boxing avoidance
and the SOM method calling convention does not require an array allocation for calls with fewer
than four arguments, which are the most common ones.

While investigating the allocation behavior in detail, we also looked at precise memory allocation
behavior. Though, the results were too similar to include and with garbage collection in the mix,
maximum RSS seemed to be the more practically relevant metric.

5.5.2 Memory Usage for Program Representation. As detailed in Section 3.4, we approximate the
differences in memory used by the program representation by using 1 to 100 copies of the SOM
unit tests. One version of the benchmark executes the unit tests, covering every line, and thus,
allocates memory to store profiling information, polymorphic inline caches, etc. However, it of
course also allocates memory for the necessary run-time objects. Though, the run-time objects
are garbage-collected almost immediately, since the unit tests do not hold onto them. Thus, the
program representation dominates memory use more and more with an increasing number of
copies of the unit tests. A second version of this benchmark merely loads the code. Thus, memory
is allocated to represent the program, but neither run-time objects nor profiling data is allocated,
providing a lower bound for code that is not executed.
With this approach, the AST on PySOM requires about 2.55× more memory than the bytecode

when it is not executed and about 2.30× when it is executed. For TSOM, we see 2.89×more memory
use for the AST when it is not executed, and only 1.21× more when it is executed. As mentioned in
Section 4.4, the bytecode interpreter reused the node objects of the AST interpreter to benefit from
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the profiling they provide. The size of these nodes is comparably large, and can explain the increase
in memory use during execution in the TSOMBC interpreter, which we do not see in PySOMBC,
because there we do no use this technique. Thus, with increased run-time profiling, the difference
between bytecode and AST interpreters in terms of memory use further narrows.

5.6 Impact of Optimizations
This section assesses the impact of our optimizations from Section 4.2 to better understand how
they interact with the choice of program representation. This analysis is intended to help language
implementers to prioritize optimizations.
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Fig. 9. Performance impact of individual optimizations on the interpreter-only speed of the fully optimized
interpreters. Run time normalized to the implementation with all optimizations, on a logarithmic scale.
Optimizations marked with (*) are specific to AST or bytecode interpreters. Overall, inlining of control
structures, inline caching, and lowering of basic operations give the highest benefit.

5.6.1 Impact on Interpreter Performance. Figure 9 shows the impact of the various optimizations
on interpreter performance, without JIT compilation. It shows how the run time increases when
specific optimizations are removed.
Inlining of control structures (see Section 4.2.3) and inline caching (see Section 4.2.1) have the

highest impact overall. On TSOMAST, removing the inlining of control structures increases the
median run time by 3.74× (min. 1.51×, max. 5.40×). On PySOMBC, its impact is lower but still the
most important one at 1.66× (min. 1.19×, max. 2.52×).

On TSOMBC and PySOMAST, inline caching is more important. On TSOMBC it gives 3.13× (min.
2.15×, max. 5.86×) and on PySOMAST 1.45× (min. 1.28×, max. 1.87×).

As can be seen with the difference between PySOM and TSOM, inlining is more beneficial when
the cost of method activation is high, which is the case for TSOM.
The caching of globals is not of high importance in the TSOM interpreters, but will be more

important when we look at just-in-time-compiled performance.
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Supernodes and superinstructions give roughly similar benefits on TSOMAST and TSOMBC
respectively, which is to be expected, since they reduce the dispatch overhead between operations
and open up a similar optimization potential. However, they are highly targeted and thus only give
a modest gain.
When optimizing interpreter performance, we would recommend to start with inline caching,

which is the most widely applicable optimization and highly important for large-scale applications.
Afterwards, lowering of basic operations will give good benefits and can target specific benchmarks
of interests. Finally, inlining of control structures will also be important for interpreter performance.
However, it can come with significant implementation complexity.
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Fig. 10. Performance impact of individual optimizations on the peak performance of the fully optimized
interpreters. Run time normalized to the implementation with all optimizations, on a logarithmic scale.
Optimizations marked with (*) are specific to AST or bytecode interpreters. Inline caching gives the highest
benefit on TSOM, because there it is needed for inlining across SOM methods. PySOM benefits more from
inlining of control structures.

5.6.2 Impact on Peak Performance. Before looking into the impact of specific optimizations on
peak performance, we can observe in Figure 10 that some optimizations are less important for it
than others. Furthermore, one difference to the impact on interpreter performance is that caching of
globals makes a good difference on TSOM for specific benchmarks, because with it the compiler can
assume the value to be a constant, which enables it to optimize more. Also on TSOM, the lowering
of basic operations, supernodes, superinstructions, and even quickening have a less noticeable
impact, because the compiler can perform similar optimizations.

Similar to the interpreter performance, inline caching is important on TSOM. Removing it from
TSOMAST results in 10.09× (min. 1.00×, max. 33.39×) increase in run time. On TSOMBC, it results
in 28.96× (min. 11.83×, max. 114.38×), making it the most important optimization. This is because
inline caching enables the GraalVM’s partial evaluator to inline across SOM methods, which is
important to enable subsequent optimizations. This is in stark contrast to PySOM, where we see a
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difference of 1.03× (min. 0.94×, max. 1.21×) on PySOMAST, and 1.00× (min. 0.89×, max. 1.07×), on
PySOMBC. Since RPython uses meta-tracing, inlining is done implicitly, and inline caching is not
needed to enable it.

On PySOM, the most important optimization is the inlining of control structures. On PySOMAST
it results in 1.46× (min. 0.87×, max. 3.81×) on PySOMAST, and on PySOMBC it gives 1.17× (min.
0.74×, max. 2.11×). The inlining helps to reduce the overall trace length and makes optimization
opportunities usually more evident to the compiler. However, on top of PySOMBC we do see also
some benchmarks slowing down when applying the optimization. In the cases we observed, the
inlining in the bytecode leads to the compiler not having as precise information on the lifetime of
variables, which can lead to extra boxing. Here, we notice that the AST structure and the use of the
host-language stack communicates such details more precisely. The reified stack in the bytecode
interpreter on the other hand can lead to such details being obscured. This effect is also noticable
on TSOMBC where removing inlining of control structures results in 3.16× (min. 0.60×, max. 7.93×).
increase of run time. While generally beneficial, there are still some slowdowns observable.

Overall, we conclude from this analysis that there is a stronger difference between meta-tracing
and partial evaluation than the choice of program representation. However, it remains to be noted
that in some cases the explicit reified stack in a bytecode interpreter can obscure variable lifetimes,
which makes it harder for a meta-compiler to yield optimal code.

6 RESULT DISCUSSION
In the following discussion, we will reflect on the results, their generalizability, the limitations of
this study, and our perception of engineering differences.

6.1 Results and their Generalizability
Results. One might argue that the results are somehow inconclusive. However, this also means

that in the context of meta-compilation systems there is no overwhelming evidence to prefer
bytecode-based interpreters as one would expect based on folklore. Instead, our results provide
some evidence that AST interpreters can be competitive.

Specifically, in Section 5.2 we have seen that the pure interpreter performance of AST interpreters
can be better than that of their bytecode counterparts. The peak performance (Section 5.3) is also
generally on par. Currently, the memory use is perhaps the most significant difference. There are
some cases where the interpreter structure of bytecode interpreters has drawbacks. Here, techniques
such as multi-level quickening [Brunthaler 2021] may provide solutions. On the other hand, it is
still true that bytecodes are significantly more compact (see Section 5.5.2) than ASTs. Especially for
established languages with large codebases, this can be a dominating factor. For new languages,
perhaps in the context of research, small applications, or scripting, AST interpreters do not only
seem to be good enough, but may have benefits over bytecode interpreters.

Generalizability Beyond SOM. As mentioned in Section 2.3, the SOM language shares the typi-
cal implementation challenges with other major dynamic languages. Specifically, it has objects,
classes, collections, lambdas, and exception-like constructs. Furthermore, the AreWe Fast Yet bench-
marks [Marr et al. 2016] exercise specifically this common core. As such, the experimental setup is
designed to evaluate the aspects common to a wide range of languages. With this, we believe our
results to generalize to a wide range of other languages of a similar kind, which includes but is not
limited to JavaScript, Python, and Ruby.

Generalizability to Other Meta-compilation Systems. Since this study is done in the context of
meta-compilation systems, there are restrictions in the type of optimizations that are supported,
as well as the code patterns the compilers are optimized for. For instance, bytecode interpreters
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currently cannot immediately benefit from optimizations such as threaded code [Bell 1973; Ertl
and Gregg 2003]. While work is underway [Izawa et al. 2022] to enable language implementers to
benefit from more such optimizations, it seems unlikely that one will have the same freedom as
for completely custom-built language implementations. Thus, custom-built implementations may
continue to use interpreters implemented in assembly, or assembly-level languages to manually
optimize for the best possible performance. While this seems to be practical for industry projects
such as V8 and JavaScriptCore VMs, and even research projects such as the Wizard WebAssembly
interpreter [Titzer 2022], the benefits of meta-compilation systems are the overall reduction of
engineering effort.
By exploring our research questions on top of two very different meta-compilation systems,

our results are likely to generalize beyond these two specific systems. On the one hand, there is
the difference in compilation approach. While RPython uses trace-based compilation, GraalVM
uses method-based compilation, both having very different tradeoffs in terms of performance and
engineering characteristics [Marr and Ducasse 2015]. On the other hand, they differ drastically in
the degree of support they provide and the sophistication of the runtime system. While RPython
uses a minimalistic approach with a few annotations, GraalVM uses the Truffle framework and
TruffleDSL to enforce a much more strict way how languages are to be implemented. Similarly, the
RPython system has a relatively straightforward incremental garbage collector, while GraalVM can
use the HotSpot JVM and any of its garbage collectors. Since RPython compiles to C, our RPython
interpreters are closer to system-language interpreters albeit with the restrictions of RPython. Thus,
both systems arguably differ significantly from each other, which means our results are likely to
generalize to other meta-compilation systems, too.
For meta-compilation systems, the results suggest that there may be further room to improve

them for AST as well as bytecode interpreters. AST interpreters could benefit from techniques for
more compact representations that more closely resemble bytecodes [Koparkar et al. 2021; Pape
2021; Pape et al. 2017; Vollmer et al. 2017]. Of course, taking the other perspective, support for
bytecode interpreters could be further improved for instance with support for boxing avoidance as
provided by the TruffleDSL [Humer et al. 2014] or multi-level quickening [Brunthaler 2021].

For meta-compilations, we believe that our results are transferable to other language implemen-
tations on the studied systems. To the best of our knowledge, TSOM and PySOM are currently the
fastest interpreters on these platforms by a considerable margin.

Generalizability to System-level Interpreters. It is unclear to us whether parts of our results may
generalize to interpreters implemented in system-level languages, i.e., C/C++, assembly, and perhaps
Rust. Generally, we assume these languages to have more control over data layout and control flow,
which results in a different performance tradeoff space.

We assume that more control over the code and code layout allows one to design interpreter
loops that fit better into instruction caches, which can have a major impact on dispatch cost and
might be much harder to achieve with an AST interpreter. While we can imagine more compact
representations for ASTs, possibly in a partially serialized form [Koparkar et al. 2021; Vollmer
et al. 2017], it is unclear that one can match the compactness of a well-designed bytecode set
without arriving at a point in the design space that also reduces the flexibility in dynamic rewriting,
removes the tree structure, or hinders co-location of instruction and caches. Thus, at the system
level, bytecode interpreters may benefit from more compact representation and interpreter loop,
which benefit data and instruction cache locality by avoiding pointer chasing in data structures
and unpredictable control flow jumps.
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6.2 Limitations of this Study
As discussed in Section 4.4, there are differences between the interpreters and their optimizations.
These differences may have an impact on the accuracy and precision of our comparisons. While
we believe that the most significant differences are related to the different underlying systems,
i.e., GraalVM and RPython, there are also differences in the degree of optimization applied to AST
and bytecode interpreters. Overall, we believe that we reached a similar level of optimization on
all systems, enabling us to draw conclusions from this study. However for completeness, we will
reiterate the main differences as limitations.

Boxing Avoidance. One of the major differences between TSOMAST and TSOMBC is the degree of
boxing avoidance realized in the interpreter. The AST interpreter is able to do boxing avoidance
for full statements, relying on the tree structure, which specializes itself to code that avoids
boxing of long and double values. In the bytecode interpreter, this is not currently possible in
the same way. The linear structure of bytecode does not provide the context for this optimization
and the stack being reified as a Object[] array leads to boxing between bytecodes. Using more
quickening [Brunthaler 2010a, 2021] and an additional stack for unboxed values may help to improve
this and reduce some of the memory overhead seen in Section 5.5.1. However, we also saw the cost
of the reified stack itself in the memory cost. Thus, boxing is not the only factor here, as the overall
structure of bytecode interpreters also had an impact. We believe this difference may only lead
us to slightly overestimating the difference between TSOMAST and TSOMBC on interpreter-only
performance.

In the context of the overall study, we also believe this difference does not have a major impact
since neither PySOMAST nor PySOMBC do boxing avoidance, and thus, we have a consistent
comparison along this axis.

Degree of Run-time Profiling. The TSOM interpreters both have a high degree of run-time profiling.
This includes profiling the activated specialization in nodes as well as active branch and value
profiling. Both TSOMAST and TSOMBC do almost the same amount of profiling. There are only
minor differences caused by nodes that are only used in TSOMAST since they are not applicable to
the bytecode interpreter, because the operations are expressed as bytecodes. Given that the peak
performance is fairly similar (see Section 5.3), we believe there is no fundamental issue.
PySOM does not do the same style of run-time profiling. While it does self-optimization and

quickening in the interpreter, meta-tracing uses concrete values from the trace, which means we
do not need to collect profiling information in the interpreter.

Bytecode-level Optimizations and Supernodes. Bytecodes and superinstructions were identified in
a step-wise process based on profiles of bytecode sequences and run-time profiles of benchmarks.
As such, the ones implemented are the ones that gave the highest likelihood for performance
improvements.We used the same approach on AST nodes, identifying common patterns to construct
supernodes.
We could have further expanded the bytecode set and increased the number of implemented

supernodes. Similarly, we could continue to identify further opportunities for bytecode quickening
and also add supernodes to PySOMAST. Given that PySOMAST already outperforms PySOMBC, any
impact on the overall conclusions is likely not to be significant. We believe that overall, further
performance gains on the used benchmarks would be minimal, because the overall benefit of these
optimizations is limited as we saw from the results in Figure 9.

Our experience with larger codebases also suggests that any performance improvement potential
is thwarted by the cost of method calls, which seem to dominate larger applications in the interpreter.
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6.3 Engineering Tradeoffs
Since bytecode interpreters are traditionally considered to be the optimal solution when one wants
to reach good performance, engineering considerations are typically relegated to a secondary
concern. However, our results indicate that AST interpreters can be competitive and thus, we will
briefly highlight the engineering tradeoffs that we noticed in this work.
With self-optimizing AST interpreters, the most important benefit is likely the use of the host-

language stack. This means the interpreter code is much closer to regular application code. In
contrast, a bytecode interpreter reifies the stack in its own data structure, which adds the complexity
of reasoning about a stack machine and implies a tail of bugs around stack balancing issues.
Furthermore, it requires code for stack printing or visualization to enable debugging, where we
can rely on the standard tooling for an AST interpreter. This benefit should not be underestimated,
especially when it comes to getting someone new to language implementations to start working
on such an interpreter.
A similar benefit for reasoning is that AST nodes localize state more. In the object-oriented

programming style, the encapsulation provides a clear separation simplifying reasoning. In contrast,
profiling information in the bytecode interpreter needs to be stored in data structures that are
accessed by a wide range of different bytecodes and thus, the interaction pattern is more complex
and requires global instead of local invariants to be maintained.
When it comes to designing optimizations, as argued by Würthinger et al. [2012], the tree

structure also provides additional flexibility. To optimize bytecode in similar ways, we may need
to implement a pass over the bytecode to recognize a specific pattern, while in an AST the tree
structure can make it trivial. An example would be the call to a built-in function with a constant
and an argument for which we can speculate on a specific type. This tree structure gives us the
opportunity to optimize something like addition, i.e., concatenation of strings right there. In a
bytecode interpreter, the linearization removes this structure, making the optimization require a
pass over the bytecodes or another non-local mechanism. However, the reverse can also be true,
and the linearized structure may facilitate other optimizations, for instance in terms of simple
peephole optimizations of instructions that are commonly adjacent. Thus, in the end, as with
other intermediate representations, different representations can be beneficial for different sets of
optimizations. However, for the typical set of optimizations that provide easy wins early on, the
AST structure tents to be a good starting point. The authors personally also find AST interpreters
more pleasant to work with.

7 RELATEDWORK
We are not the first to compare between AST and bytecode interpreters. Most closely related to
our work on top of meta-compilation systems is work by Niephaus et al. [2018] and Kalibera et al.
[2014]. Niephaus et al. [2018] implement GraalSqueak and compare an ASTwith a bytecode-inspired
interpreter on top of GraalVM. GraalSqueak is also a Smalltalk, which they evaluate with a prime
number sieve and Fibonacci benchmark. However, what they call bytecodes does not leverage the
benefits of a compact representation, because each of their “bytecodes” is represented by a node
object which requires at least a Java header, typically 16 bytes, and a parent pointer of 4 or 8 bytes.
Our work here uses a true bytecode encoding where each instruction is represented with one or
two bytes (see Section 4.1). Furthermore, we compare the interpreters not just on top of GraalVM,
but also RPython, and use the more comprehensive AreWe Fast Yet benchmarks. Many of the
mentioned GraalVM-specific optimizations are common to languages using the Truffle framework,
and we apply them, too.
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Kalibera et al. [2014] implemented FastR, an AST interpreter for a subset of the R language, and
noted that they achieved better performance than the GNU R bytecode interpreter. While it is
another data point suggesting the potential of AST interpreters, it is a comparison between worlds,
i.e., across different systems and implementation languages with many confounding factors. Our
comparison removes these factors and can examine the differences between program representa-
tions, since we have AST and bytecode interpreters in the same system. That being said, we apply
many of the techniques they recommend in Kalibera et al. [2014] section 4. For instance, we apply
optimizations as soon as possible on AST and bytecode to gain performance. We utilize aggressive
specializations, cache lookups, and use storage strategies to specialize data structures to reach
state-of-the-art performance.

Körner et al. [2021] compared the performance of AST and bytecode interpreters in the context
of Prolog, and found AST interpreters to be more efficient in many cases, also noting their ease of
implementation compared to bytecode. One aspect here is that Prolog is more amenable to being
represented as an AST due to its recursive execution model, and attests to the strength of the
more natural representation of a tree when compared to the linear nature of bytecode. These types
of thoughts are not new. D’Hondt [2008] asked whether we should consider bytecodes to be an
atavism, however, without a clear answer with respect to performance.
In the context of meta-compilation systems, we studied the difference between meta-tracing

and partial evaluation before [Marr and Ducasse 2015]. While we still use GraalVM and RPython
as the only practical meta-compilation systems, we now focused on the question of program
representation.

8 CONCLUSION AND FUTUREWORK
Meta-compilation systems enable us to implement languages based on interpreters, while compo-
nents such as just-in-time compilation and garbage collection are provided by the system. This
means language implementers benefit not just from reduced engineering effort, but also all the
know-how around interpreters. Part of this folklore is that bytecode interpreters are faster and
more memory efficient than abstract-syntax-tree interpreters.

In our study, we showed that this is not generally the case on top of meta-compilation systems.
Instead, AST interpreters are on par, and in some cases even faster than bytecode interpreters,
with and without meta-compilation. We showed this based on PySOM and TSOM, for which we
built both an AST and bytecode interpreter on top of both RPython and GraalVM. We evaluated
performance and memory use based on the AreWe Fast Yet benchmarks [Marr et al. 2016].
While we found that both AST and bytecode interpreters can be on par performance-wise, we

could also confirm that bytecodes are, as expected, a more memory-efficient program representation.
However, as soon as run-time profiling information comes into the mix, the difference becomes
smaller. Furthermore, with the structure of bytecode interpreters, they may need more run-time
memory allocations, which can have a negative impact on overall memory use. We also investigated
the performance impact of common optimizations, which can help language implementers to
prioritize their implementation.
We believe our results show that AST interpreters should not be so readily discounted when it

comes to implementing efficient and fast language implementations. While bytecodes can be more
compact, AST interpreters have engineering benefits such as direct utilization of the host-language
stack, more localized and encapsulated state, and their tree structure facilitates early optimizations
that can make them a suitable choice for some implementations.
In the future, we should reconsider self-optimizing AST interpreters also for languages imple-

mented at the system level in C/C++ or assembly. Since these bytecode interpreters can benefit
from threaded interpretation and other common bytecode interpreter optimizations, it would be
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good to confirm whether these techniques are still making bytecodes the better choice in terms of
performance. Körner et al. [2021]’s work is an encouraging step in this direction.
Meta-compilation systems could also benefit from further improvements. Using techniques

proposed by Koparkar et al. [2021], Pape et al. [2017], Pape [2021], and Vollmer et al. [2017] may
enable more compact representations of ASTs that can still be interpreted and benefit from self-
optimization. The work of Humer and Bebić [2022] on Operation DSL is also promising. It aims
to make the implementation of bytecode interpreters on top of GraalVM as convenient as AST
interpreters. Such an Operation DSL could solve the issues we observed around boxing avoidance
and may enable the integration of multi-level quickening [Brunthaler 2021].

While we were not able to measure warmup differences with the benchmarks we used, we know
that bytecode interpreters can suffer from longer compilation times on top of GraalVM. The partial
evaluation system will first unroll the bytecode loop and duplicate it as many times as a method
has bytecodes, and inline all called methods aggressively. This results in huge compiler graphs and
is a known limitation with the current system. Future work should investigate how to effectively
interleave classic optimizations with partial evaluation to minimize the compiler graph and the
corresponding compilation time.

GraalVM is currently also limited in the optimizations it can apply to bytecode interpreters since
the GraalIR only supports structured control flow. Thus, creative solutions to e.g. enable effective
threaded interpretation would be needed.

DATA-AVAILABILITY STATEMENT
Our experimental setup to identify run-time performance and memory usage tradeoffs between
AST and bytecode interpreters is available on Zenodo [Larose et al. 2023]. The artifact contains the
PySOM and TSOM interpreters as well as the scripts and documentation to reproduce the figures
in Section 5 and add new experiments.
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A SOM ABSTRACT SYNTAX TREE NODES
The PySOM and TSOM AST interpreters differ significantly in the number of different AST nodes
they provide and use. Since the Truffle framework and TruffleDSL strongly encourage to use nodes,
the TSOM interpreter comes with many more nodes. On the other hand, the PySOM interpreter
often relies on simple functions, for instance to implement primitives.
In Table 1, we give a general overview that based on TSOM. However, we omit any nodes that

are not used as true AST nodes but are merely additional implementation details. This includes
helper nodes, and nodes that realize built-in functions but are never used at the AST level.
For brevity, node variants will use the notation [Optional] to indicate optional name parts.

Thus the entry [Non]LocalArgument represents two nodes, one for local and one for non-local
argument accesses. With (Read|Write)we denote alternative name parts. [Uninit] node variants
typically need to resolve some detail on first execution, but then rewrite themselves to a version
that caches the initialization result.

B SOM BYTECODE SET
The SOM bytecode set was originally very minimal with 16 instructions.5 For our purposes, we
expanded it based on static and dynamic bytecode frequency. On the one hand, we wanted to
encode programs as compact as possible, which means we selected bytecodes, typical arguments,
and bytecode sequences based on the static frequency in which they appeared in our benchmarks.
On the other hand, we selected them based on the dynamic frequency, i.e., based on how often they
were executed. The resulting bytecode set can be seen in Table 2. Note, the bytecode sets in TSOM
and PySOM use different bytecode variants for accessing frames and method activations, i.e., sends,
since the two implementations differ as discussed in Section 4.4.
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5https://github.com/SOM-st/som-java/blob/master/src/som/interpreter/Bytecodes.java
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Table 1. SOM AST Nodes including Supernodes and Variants.

Name of AST Node Description
Fine-grained Nodes
Sequence list of expressions, evaluated in order

[Non]LocalArgument(Read|Write) read or write of argument
[Non]LocalVariable(Read|Write) read or write of variable
Field(Read|Write) read or write of an object field
(Uninit|Cached|True|False|Nil)Global read a (specialized) global
UninitMessageSend lookup and activate method,

rewrites itself, posssibly to built-in operation
GenericMessageSend lookup and activate method, generic case
ReturnNonLocal unwind stack to outer lexical method
CatchNonLocalReturn catch non-local and return from method
(Int|Double|Generic)Literal evaluate to literal value
Block(WithContext) instantiate block, possibly with lexical context

Basic Operation Nodes
(+|-|*|/|//|%|rem|<=|<|>|>=|=|== various basic operations
<>|~=|&|^|cos|sin|sqrt|abs|
<<< | >>> | && | #and: |
|| | #or: | not )
New instantiate object or array
#at: | #at:put: | #putAll: read, write, and overwrite all for containers
#value | #value: | #value:with: operations to activate blocks

Nodes with Inlined Blocks
Inlined(And|Or|If|IfElse| inlines literal block arguments and realize

IfNil|IfNotNil| the control structure
Do|To|ToBy|DownTo|While)

ReturnLocal return from method, with value of expression

Supernodes
LiteralStringEquals compare value to literal string
[Non]LocalFieldStringEquals compare field to literal string
(Unary|Binary|Ternary|Quat)ArgSend read arg, send method with 1-4 parameters
[Uninit]IncField increment a field value

Inc[Non]LocalVariable increment a variable based on subexpression
IntInc[Non]LocalVariable increment a variable by a constant
IntInc increment a value by a constant

(<|>=)Int compare value to integer constant
LocalArg(<|>=)Int compare argument to integer constant

[Non]LocalVarReadUnaryMsgWrite read var, send unary message, write back result
[Non]LocalVarReadSquare read var, multiply with itself
[Non]LocalVarReadSquareWrite read var, multiply with itself, write back result
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Table 2. SOM Bytecode Set with all Superinstructions andQuickening Variants.

Bytecode Description
Bytecodes and Variants Encoding Common Arguments
HALT exit interpreter loop
DUP duplicate top of stack
PUSH_LOCAL [0|1|2] push local, with explicit index byte, or bytecode variant

explicit index is encoded as 1 byte
PUSH_ARG [0|1|2] push argument, with explicit index byte, or bytecode variant
PUSH_FIELD [0|1] push field value, with explicit index byte, or bytecode variant
PUSH_BLOCK instantiate block, from index in literal array
PUSH_BLOCK_NO_CTX instantiate block but do not set outer lexical scope
PUSH_CONSTANT [0|1|2] push constant from literal array
PUSH_0|1|NIL push zero integer, one integer, or nil object
PUSH_GLOBAL push global, explicit index byte into literal array

for name of global for lookup. Quicken bytecode,
caching global association object

POP pop top of stack
POP_LOCAL [0|1|2] pop top of stack, store into local
POP_ARGUMENT pop top of stack, store into argument
POP_FIELD [0|1] pop top of stack, store into field
SEND lookup and activate method,

but quicken bytecode based on number of arguments
SUPER_SEND activate method in lexical superclass
RETURN_LOCAL return, use top of stack as result
RETURN_NON_LOCAL return method that instantiate current block,

unwind stack as necessary

Superinstructions
RETURN_SELF return, use self/this as result
RETURN_FIELD_0|1|2 return, use field read of self as result
INC increment the top-of-stack value by one
DEC decrement the top-of-stack value by one
INC_FIELD increment field
INC_FIELD_PUSH increment field and push result on stack

Control-flow Bytecodes for Block Inlining
JUMP[2] relative jump, with unsigned 1 or 2 byte offset
JUMP[2]_ON_TRUE_TOP_NIL jump if top of stack is true and set top to nil, otherwise pop
JUMP[2]_ON_FALSE_TOP_NIL jump if top of stack is false and set top to nil, otherwise pop
JUMP[2]_ON_TRUE_POP jump if top of stack is true, always pop top of stack
JUMP[2]_ON_FALSE_POP jump if top of stack is true, always pop top of stack
JUMP[2]_BACKWARDS relative backwards jump, with unsigned 1 or 2 byte offset

Quickend Bytecodes
Q_PUSH_GLOBAL push global by reading from cached association object
Q_SEND [1|2|3] lookup with polymorphic inline cache, and activate method

variants to specialize for 1-3 arguments
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