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Optimizing performance on top of modern runtime systems with just-in-time (JIT) compilation is a challenge
for a wide range of applications from browser-based applications on mobile devices to large-scale server
applications. Developers often rely on sampling-based profilers to understand where their code spends its
time. Unfortunately, sampling of JIT-compiled programs can give inaccurate and sometimes unreliable results.

To assess accuracy of such profilers, we would ideally want to compare their results to a known ground
truth. With the complexity of today’s software and hardware stacks, such ground truth is unfortunately not
available. Instead, we propose a novel technique to approximate a ground truth by accurately slowing down a
Java program at the machine-code level, preserving its optimization and compilation decisions as well as its
execution behavior on modern CPUs.

Our experiments demonstrate that we can slow down benchmarks by a specific amount, which is a challenge
because of the optimizations in modern CPUs, and we verified with hardware profiling that on a basic-block
level, the slowdown is accurate for blocks that dominate the execution. With the benchmarks slowed down to
specific speeds, we confirmed that Async-profiler, JFR, JProfiler, and YourKit maintain original performance
behavior and assign the same percentage of run time to methods. Additionally, we identify cases of inaccuracy
caused by missing debug information, which prevents the correct identification of the relevant source code.
Finally, we tested the accuracy of sampling profilers by approximating the ground truth by the slowing down
of specific basic blocks and found large differences in accuracy between the profilers.

We believe, our slowdown-based approach is the first practical methodology to assess the accuracy of
sampling profilers for JIT-compiling systems and will enable further work to improve the accuracy of profilers.
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1 Introduction

Many applications benefit from just-in-time (JIT) compilation, including browser-based applications,
games, and long-running server systems. Once an application gains users, developers often need to
optimize the performance of specific features. CPU sampling profilers are an important tool for
developers to find optimization opportunities, since they identify the methods in which a program
spends its time. Unfortunately, sampling profilers for systems with JIT compilation can suffer
from safepoint bias, report wildly different results across multiple runs, and different profilers may
disagree on results for the same program [Burchell et al. 2023; Mytkowicz et al. 2010].

To improve these profilers, we need to be able to determine whether they are accurate. This,
in turn, means we need to be able to compare the profiles they record with a ground truth, i.e., a
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perfect representation of where a program spends its time. Unfortunately, the complexity of today’s
hardware and software systems makes it virtually impossible to derive a correct ground truth from a
theoretical performance model, and using hardware simulation is generally impractical [Gottschall
et al. 2021]. This, however, means the only practical approach is to approximate a ground truth based
on measurements of a concrete system. This is problematic because measuring the system changes
the system, i.e., it induces an observer effect [Burchell et al. 2024; Machkasova et al. 2009; Zheng
et al. 2015]. Measuring at the CPU hardware level comes with overheads, profiling JIT compiling
VMs such as the JVM can interfere with the JIT compilation, possibly impact optimization decisions,
and suffers from the aforementioned safepoint bias [Burchell et al. 2023; Mytkowicz et al. 2010].

This paper proposes a methodology to assess the accuracy of sampling profilers for systems with
JIT compilation. The main technique is to slow down a program accurately at the level of native
code basic blocks using the feedback of CPU instruction profiling support. By comparing profiles
for different levels of slowdown, we approximate the ground truth, which allows us to assess the
accuracy of sampling profilers. We implement our approach in the Graal compiler, ensuring that
compilation decisions are not affected and the program’s performance behavior remains unchanged.

Given the complexity of modern CPUs with cache hierarchies, out-of-order execution, pipelining,
and microcode [Colwell 2021], we start our evaluation by demonstrating that we can slow down
the Are We Fast Yet benchmarks [Marr et al. 2016] by adding an overhead of 50%, 100%, or 150%. We
find that the median run-time overhead across all tested benchmarks is 50.0%, 100.0%, and 146.8%.
The overhead of individual basic blocks is accurate for the majority of blocks that dominate the
run time. This demonstrates the ability to accurately change the run time of these benchmarks
with respect to total run time measured with wall-clock time as well as at the basic-block level, as
observed by CPU instruction profilers.

As the next step, we confirm that the benchmarks maintain original performance behavior, in
the form of the percentage of time per method remaining the same with the different slowdowns,
as one would expect. We investigate this using four sampling profilers for JVMs: Async-profiler,
JFR, JProfiler, and YourKit. We found that in 13 out of 14 benchmarks, the run time percentage
for methods reported by each profiler was within 5%pt of the expected percentage. Only for one
benchmark did they misattribute the run time. This happened because the debugging information
provided by the JIT compiler does not allow for a correct machine-code to source mapping.

Finally, we tested the accuracy of the profilers by approximating the ground truth by slowing
down individual basic blocks. By adding a specific slowdown, we can estimate the change in run
time an accurate profiler needs to report. This way, we can assess whether profilers are sensitive
enough to detect and attribute the change accurately. We found three of the four profilers detected
the changes correctly and accurately most of the time. However, JProfiler misattributed most of the
changes and was significantly more inaccurate than the other profilers.

The contributions of this paper are as follows:

e An approach to assess the accuracy of profilers by approximating the ground truth by slowing
down specific basic blocks.

e A technique to accurately slow down a JIT-compiled program at the basic-block level guided
by CPU instruction profiling.

e We demonstrate that programs achieve the target slowdown at the overall run time as well
as the basic-block level preserving the underlying performance behavior.

e Four JVM sampling profilers, we show that they reach a good level of accuracy but fail when
they cannot correctly attribute native code to source code.
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2 Background

This section discusses the background on profiling, the Graal compiler, x86, and VTune as a CPU
instruction profiler.

2.1 Sampling Profilers

The four JVM-based profilers we evaluated Async, JFR, YourKit, and JProfiler, use a sampling
approach to periodically capture execution data. During a program’s execution, at intervals set
by the user or profiler, the program’s execution is temporarily halted, and data is collected. These
intervals are typically set to be regular to ensure an equal distribution and probability of sampling
every part of the program with the same likelihood. In addition to identifying where a program
spends its time, such profilers often also report call stack, CPU utilization, and memory usage.
However, sampling-based profilers only collect insights at the sampled points, leaving gaps where
activity might occur between intervals.

Such profilers can be subject to safepoint bias [Mytkowicz et al. 2010] and can exhibit inconsis-
tencies between runs [Burchell et al. 2023]. The safepoint bias comes from only collecting details
about the executing program when it is in a known state, i.e., at a safepoint [Agesen 1998], which
limits and biases the view on the execution. However, profilers such as Async-profiler aim to avoid
this safepoint bias.! It uses an Open]DK internal API AsyncGetCallTrace,? to sample the call stack
independent of safepoints.

Mapping from Native to Source Code. As previously discussed, sample-based profilers periodically
halt execution to collect for instance the current instruction pointer. The instruction pointer is then
looked up in compiler-generated debugging information to determine which method is executing.
Profilers such as Async-profiler and JFR use the aforementioned AsyncGetCallTrace API® for
this. When AsyncGetCallTrace encounters instructions without debug information, it attempts
to attribute them by identifying the nearest method boundary.* Although this approach is accurate
given correct debugging information, compiler optimizations may impact the correctness and
completeness of debug information [Assaiante et al. 2023; Kell and Stinnett 2024]. For instance,
compilers may fuse loops or merge methods into a single optimized operation, complicating
or eliminating debug attribution entirely. JVM compilers also generate implementation-specific
backend code, e.g., garbage collection barriers, which does not directly correspond to the source
code, making instruction-level source attribution more complex. Kell and Stinnett [2024] highlight
that code reordering and transformation is important for performance, but can degrade the accuracy
of debugging information, causing tools such as profilers to misattribute execution time and confuse
identification of hot source lines.

2.2 Graal Compiler

The Graal compiler is a just-in-time (JIT) compiler, a system designed to perform compilation
during program run time [Duboscq et al. 2013]. JIT compilers leverage run-time information, for
instance about types and method calls, but also CPU architecture and system-specific details to
optimize performance. Once the JVM identifies a hot method, i.e., frequently executed code, it
compiles and optimizes it with the available information to achieve optimal performance.

!https://github.com/async-profiler/async-profiler
Zhttps://github.com/async-profiler/async-profiler/blob/master/docs/GettingStarted. md

3See discussions: https://jpbempel.github.io/2022/06/22/debug-non-safepoints.html, https://psy-lob-saw.blogspot.com/2016/
06/the-pros-and-cons-of-agct.html

“instruction pointer Fallback: https://github.com/openjdk/jdk/blob/0460978e7¢769624cacdb528277299914b327e30/src/jdk.
hotspot.agent/share/classes/sun/jvm/hotspot/code/NMethod.java/#L287
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Compilation Process. The Graal compiler uses several intermediate representations (IRs), to
optimize the code and subsequently generate machine code. These stages include:

(1) Higher Intermediate Representation (HIR): A higher-level abstraction of the source code
enabling analyses and optimizations.

(2) Lower Intermediate Representation (LIR): A lower-level abstraction closer to machine
code enabling further optimizations and for instance register allocation.

(3) Machine Code: The final output of the compilation process, tailored for execution on the
specific hardware.

In the Graal compiler the higher intermediate representation is a graph of nodes representing
operations and edges indicating dependencies [Click and Paleczny 1995; Duboscq et al. 2013]. On
this HIR, the compiler applies a range of optimizations, such as loop transformations, inlining, and
dead code elimination, to improve performance.

Graal LIR Blocks. After the Graal HIR stage, the code is transformed into the lower intermediate
representation (LIR) form. Here, the compiler organizes the code into blocks, similar to machine
code basic blocks. These LIR blocks share key characteristics with basic blocks in that they have
a single entry point and a single exit point. Once execution enters an LIR block, it is expected to
execute all the LIR instructions sequentially until reaching a jump at the end.

2.3 Basic Blocks, Pipelining, and Out-of-Order Execution

Machine Code Basic Block. A machine code basic block is a sequence of instructions that are
executed sequentially, from start to finish, without any internal jumps or branches. The only
exception is a single jump or branch instruction at the end of the sequence, which determines the
next block to be executed [Bakhvalov 2024; Hennessy and Patterson 2017]. For our work, we rely
on all instructions within a block being executed to keep our approach manageable.

Pipelining & OOO. Modern processors utilize pipelining and Out-of-Order Execution (OOO) to
improve instruction throughput and overall performance. Pipelining allows multiple instructions
to be processed simultaneously by breaking execution into distinct stages, such as fetch, decode,
execute, and writing. OOO execution enables the processor to reorder instructions to maximize
efficiency. The CPU can look ahead and determine whether future instructions share dependencies
with currently executing instructions. If no dependency exists, the CPU can reorder independent
instruction sequences to optimize execution and minimize idle cycles. However, this dynamic
reordering complicates performance analysis, as the observed execution order may not match
the program’s original instruction sequence, making it challenging to attribute instruction-level
execution time accurately in profiling experiments.

2.4 VTune, A Profiler Using Hardware Event Sampling

Intel’s VTune profiler is a run-time analysis tool for systems with Intel (and some AMD) CPUs. It
monitors hardware and system usage through sampling and hardware counters, and can reveal
instruction-level hotspots. We use VTune’s hardware event-based sampling mode, which periodi-
cally samples performance counters that track metrics such as CPU cycles or instruction executions.
These counters can be programmed for specific events [Bakhvalov 2024]. However, counters are
sampled rather than recorded continuously, so there is a level of granularity that may miss some
events. They are also subject to skid, where delays in halting execution introduce mismatches, and
out-of-order execution further complicates accuracy [Xu et al. 2019].
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3 Existing Approaches and Challenges to Assessing the Accuracy of Java Profilers

Since the accuracy of a profiler corresponds to how reliably developers can identify optimization
targets, evaluating their accuracy has been explored previously.

Java Profiler Accuracy and Sampling Bias. Mytkowicz et al. [2010] investigated whether multiple
Java profilers would provide consistent results for the same program. They found that different
profilers often disagreed, suggesting that some of them were inaccurate. Additionally, they examined
whether sampling-based profilers distributed samples evenly across a program’s execution. They
found that was not the case, and instead profilers tended to sample execution at so-called safepoints,
which are VM-specific implementation details. Thus, profiles could not represent the distribution
of execution time accurately. Since 2010, modern profilers have developed techniques to avoid such
safepoint bias. For example, Async-profiler was specifically designed to eliminate it.

Recently, we revisited the question of whether sampling Java profilers exhibited accuracy is-
sues [Burchell et al. 2023]. We found that different profilers still provided different answers for
the same program, indicating that some, if not all, were inaccurate. Worse yet, profilers produced
different results across multiple runs of the same deterministic program.

Approaches and Challenges to Evaluating Java Profiler Accuracy. Mytkowicz et al. [2010] proposed
to assess whether profilers give actionable results by injecting a Fibonacci sequence computation
into methods at bytecode loading time. With this approach, they tested whether a profiler detected
the run time caused by this injected computation, and whether a profiler correctly attributed the
additional run time to the modified method, and if not, how far they are off as a ratio between
expected and actual run time.

With compiler optimizations such as inlining and dead code elimination, their approach becomes
unfortunately unreliable. On JVMs, compiler optimizations such as inlining are applied on the
modified bytecode, which means the inserted computation can change optimization decisions.
Additionally, modern CPU design features, such as out-of-order execution and pipelining, introduce
further complexities. Thus, any slowdown injected into the source or bytecode code may have
unintended side effects. Inlining and code motion may also impact where the slowdown is applied,
which means that there is no guarantee of a consistent slowdown effects for a single target method to
approximate accuracy more precisely. We discuss this further in the context of Graal in Section 7.3.

Challenges in Evaluating Profiler Accuracy: The Need for a Ground Truth. Evaluating the accuracy
of profilers is inherently difficult because we do not know what an accurate profile for a program
execution would be and obtain such a ground truth is a challenge itself.

While sampling profilers do not directly change the executing program, they still influence
execution enough, for instance by sampling stacks, to alter how a program is compiled, and thus,
induce an observer effect. This observer effect is one explanation for why we saw significantly
different results across multiple runs of a profiler [Burchell et al. 2023].

Given the complexity of modern JIT compilation, the software stack, and today’s CPUs, it is
also not feasible to look at a program’s source code and determine how it executes. Even relating
source to machine code is a challenge with modern compiler optimizations. Indeed, they can make
mapping back and forth not just challenging but ill-defined because of code motion, loop fission
and fusion, and other transformations [Assaiante et al. 2023; Kell and Stinnett 2024].

Ground Truth in Non-Deterministic Systems. In addition to the above issues, in most modern
systems, each program run establishes essentially its own ground truth. Because of the nondeter-
minism, caused by for instance caching, garbage collection, and concurrent execution, every run
can execute slightly differently. This means, theoretically, there are multiple ground truths for a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 402. Publication date: October 2025.



402:6 Humphrey Burchell and Stefan Marr

program. To make the problem tractable, one needs to reduce non-determinism, to achieve more
stable program behaviors that can be compared.

To approximate the ground truth, we implemented a dynamic system that introduces accurate
and targeted slowdowns throughout a program. Furthermore, we reduce the non-determinism
in the system by using compilation replays, and more deterministic compiler settings, to achieve
comparable program runs.

4 Divining Profiles: Approximating a Ground Truth with Basic-Block-level Slowdowns

In the following section, we outline our approach to slowing down a program, without interfering
with compiler optimizations and minimizing impact on microarchitectural performance behav-
ior. We first describe the idea behind our approach, give an overview of it, and then discuss its
implementation in Graal.

4.1 Approximating the Ground Truth with Proportional Slowdowns

Our approach relies on approximating the ground truth by proportionally slowing down a program,
and identifying deviations from the expected performance. We start by defining the key terms.

Ground Truth and Approximated Ground Truth. The Ground Truth is the true run time behavior
a program exhibits, for a specific execution. In our experience, machine-code basic blocks are a
suitable abstraction in this context. We thus, abstract program behavior by time t; for each basic
block bb;. Unfortunately, there exists no pure function f(bb;) = t; to measure the time without
interference, because on today’s systems measuring t; changes t;, due to the observer effect. Instead,
we approximate f with a function g such that the difference between actual and approximate time
is negligible, i.e.:

lg(bbi) - f(bb)| < e.

In our case, g is the time obtained from hardware counters, i.e., the Approximated Ground
Truth, and we check for deviations ¢ by slowing down every block by a constant factor. We assume
that there is a linear relation between a basic block’s execution time and the time its slowed-down
version takes:

g(bb; x 1.5) = 1.5g(bb;),  g(bb; x2) =2g(bb;),  g(bb; x 2.5) = 2.5 g(bb;).

These constant factors 1.5, 2, and 2.5 are our target slowdowns of 50%, 100%, and 150% that we will
use in our experiments. Any departure from this linear relation will show up in experiments as a
deviation in the time spent inside the basic block and consequently the corresponding method. If
our Approximated Ground Truth is inaccurate, the slowdown will exaggerate a change in program
behavior. We will test our assumption of a linear relation by looking for deviations and the effect
slowdown has on program behavior in Section 6.2.

Using the Approximated Ground Truth to Evaluate Profilers. To evaluating profilers we use a
known approximate ground truth and apply the slowdown to a single code region. An accurate
profiler should report an increase in run time for the slowed-down region only, leaving all other
regions unchanged. Because we precisely control how much slowdown is added, we can measure
the extent to which a profiler reflects actual execution behavior, e.g. the exact amount of additional
run time in the targe code region should be detectable. This allows us to detect profiler inaccuracies
at the method level.
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4.2 Slowing Down a Program Proportionally and Accurately

To slow down a given program, we need to understand how it compiles to native code and how
much time it spends in each basic block of the native code. Then we can slow down each basic
block by the desired factor and consequently increase the run time proportionally and accurately.
However, because of the complexity of today’s systems, we cannot predict the needed slowdown
(see Section 7.2.6 for a discussion). Instead, we need to measure how much time each basic block
takes and then insert a suitable amount of instructions into the basic block, so that its run time
increases appropriately. To measure the time a basic block takes, we use VTune’s hardware-counter-
derived timing information (see Section 2.4). Because of the complexity of today’s systems, this is a
search process for the appropriate slowdown. We refer to this search as divining. The end result is
that we know for each basic block how many instructions we have to insert to achieve the desired
run-time increase. Figure 1 illustrates the steps of this process.

!
!
Profile Program ; X
with Slowdown '
'
'

Profiling Step

Profile with VTune

Program/

Benchmark Process
Basic Block Baseline VTune
Report Slowdown

Amount
for each
Basic Block

Basic Block Map

15

Apply ) Profile
Slowdown with VTune

Preamble Step Divining Step
Fig. 1. lllustration of the steps to slow down a program. First, in the preamble step, we identify how the
program compiles to native code and how much time basic blocks take without slowdown. In the divining
step, we find the right amount of slowdown for each basic block. This slowdown information can then be
used to profile the program with a Java profiler, for instance, to assess the profiler’s accuracy.

In the remainder of this section, we detail how we implemented this process in the Graal compiler.
First we discuss the GroundTruth Scheduler, which controls the overall process, and then detail the
implementation of our custom compiler phase in Graal, that inserts instructions at the LIR (Lower
Intermediate Representation) level.

4.3 Implementation of the Divining Process with our GroundTruth Scheduler

The overall process is automated with our GroundTruth (GT) Scheduler. It runs a target program
with VTune and our modified version of the Graal JIT compiler to identify the appropriate amount
of slowdown for each relevant basic block following the process from Figure 1. The GT Scheduler
implements the two main phases, the Preamble Phase and the Divining Phase.

Preamble Phase. The preamble phase performs two runs using the VTune profiler. It first runs
the target program without any modifications, but with VTune attached to determine the baseline
run time for all relevant basic blocks. Afterwards, it does a Marker Run, which is used to establish a
reliable mapping between basic blocks at the Graal LIR level and basic blocks in the final native
code. For this, we use a Graal LIR phase that introduces instructions that encode Graal LIR block
IDs into the native code, as detailed in Section 4.4.1. The marker run is also profiled with VTune so
that we can process the hardware instruction profiles to establish the mapping.

The GT scheduler processes the VTune output of these two runs, comparing the generated
assembly for each method with significant run time.> We parse the assembly text output VTune

SWe process every method that contributes at least 2% of to the total run time, which is a good tradeoff between precision
and the overall time divining takes.
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produces to detect all basic block markers, which provides us with a reliable mapping between
Graal LIR and native basic blocks. Additionally, we collect the time each native basic block took in
the normal run as baseline, and to know how much time blocks contributes to the total run time.
Blocks that contribute fewer than 0.001 seconds are excluded from further processing.®

Divining Phase. The divining phase determines the amount of slowdown needed for each basic
block to achieve the target slowdown. The process begins with initial slowdown value of 1 to
every block, i.e., the smallest amount of slowdown we can add to a block, which corresponds to
adding one extra instruction. The program is then executed with these slowdowns and profiled
with VTune. The generated hardware instruction profile is then analyzed to determine whether
more slowdown is needed based on the time VTune reports for all instructions in a basic block.”

For blocks that do not exceeds the target slowdown, an additional slowdown is added. If a block
exceeds the target slowdown, we compare the achieved slowdown from the last iteration where
the block was below the target and the one where it was over and pick the slowdown that comes
closest to the target. The process terminates once we approximated the target slowdown for each
basic block. The final slowdown value for each block is thus the one closest to the target slowdown,
usually slightly under or over.

When blocks require significantly larger amounts of slowdown, ranging from hundreds to
thousands of slowdown instructions we adjust the amount of slowdown applied per iteration.
Instead of incrementally adding slowdown by 1 at a time, we start by increasing it in steps of
10. Once we surpass the target slowdown, we perform a binary search, using the last known
slowdown amount that was below the target speed and the first amount that exceeded it, to refine
the slowdown more accurately.

Note that we handle each compilation unit separately to optimize the overall time the divining
process takes. This avoids slowing down the whole program and handling each compilation unit
independently takes less time overall. Though, all blocks within a compilation unit are processed
simultaneously during each iteration, to ensure that performance behaviors between basic blocks
of the same compilation unit are not changed.®

The end result of the divining process is a JSON file that encodes the needed slowdown for all
relevant basic blocks in all relevant methods (compilation units), which can then be used to assess
the accuracy of profilers.

4.4 Implementation of Compiler Phases in Graal

An implementation of our approach needs to overcome two challenges. It needs to minimize
its impact on compiler optimizations to ensure the program’s original performance behavior
remains unchanged, and it needs to reliably map basic blocks of the compiler’s lower intermediate
representation (LIR) to the basic blocks in the native code it generates.

We minimize any impact on compiler optimizations by implementing our approach as LIR phases.
We place these phases as late as possible, right before the final compiler phase, which decides the
order in which machine code is emitted.

%Similar to methods, this is a good tradeoff between precision and divining time. However, it also avoids including basic
blocks that VTune sometimes omits because of the sampling of hardware counters, which would lead to instability in the
divining process caused by such insignificant blocks appearing and disappearing non-deterministically.

"The underlying hardware counters and sampling may misattribute execution time to neighboring instructions. We assume
that the accuracy on the level of basic blocks is sufficient for our purposes, and discuss the issues and implications more
fully in Section 7.2.3.

8While there can be performance effects between compilation units, this is a good tradeoff between precision and overall
divining time.
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The second challenge, the reliable mapping from LIR basic blocks to native code basic blocks is
solved by explicitly marking native blocks with their corresponding LIR block IDs in the previously
sketched preamble phase (see Section 4.3). By marking blocks, we overcome several issues: Graal
LIR instructions can be complex and a single LIR instruction may result in multiple as well as
different machine instructions based on context. This is because LIR instructions can have nontrivial
mappings to native code, and Graal performs instruction selection and peephole optimizations when
it emits the native code. Thus, mapping back from the native code to the original LIR instruction is
nontrivial. For instance, Graal has a LIR instruction that is compiled to a dispatch table, and the
number of emitted native instructions depends on the number of entries in the dispatch table. This
LIR instruction can also emit two branches, which means a single LIR instruction corresponds to
multiple basic blocks in the native code.

To establish the mapping, we add a Marker Phase to Graal’s LIR. The results of this phase are
then utilized by our Slowdown Phase, also added at the LIR level, to insert slowdown instructions to
the right basic blocks in separate runs.

Block 34:

mov r11, 0x1914

mov rilod, oxffffffcd
jmp <Block 36>

W o e

(a) Original Machine Code Block

1 Block 34: 1 Block 34:

2 vpblendd xmm@, xmm@, xmm@, Ox2e 2 mov rl11, 0x1914

3 vpblendd xmm@, xmm@, xmm@d, Ox0Q 3 mov rax, rax

4 mov rl11, 0x1914 4 mov rled, oxffffffcd

5 mov rled, oxffffffcd 5 mov rdx, rdx

6 jmp <Block 36> 6 jmp <Block 36>
(b) Marked Machine Code Block, the vpblendd (c) Slowdown Machine Code Block, the additional
immediate value here of @x2e signifies that it mov instructions at lines 3 and 5, were inserted to
corresponds to the Graal LIR block 46 increase the CPU run time of the basic block

Fig. 2. Three versions of a Machine Code Block: (a) the original unmodified block, (b) the version with marker
instructions, (c) the slowed-down version.

4.4.1 Marker Phase. The marker phase is only used in the preamble step (see Section 4.3) to establish
a reliable mapping between Graal LIR blocks and native basic blocks. It inserts side-effect-free
operations into the generated machine code to encode IDs for the LIR-level block. These operations
do not alter the program’s computations, but are easily recognized as unique markers in the emitted
machine code. Specifically, we use vpblendd instructions [Intel 2016, p. 5-321], which are part of
the AVX2 extension. When used with a single register and an immediate value, e.g., as vpblendd
reg, reg, reg, immd, the register remains unchanged. By using two vpblendd instructions one
after another we can use the immediate values to encode unique IDs as 16 bits numbers, which is
sufficient to identify blocks within a single compilation unit. This use of vpblendd with a single
register is not generated by Graal otherwise, and thus, can safely be used for our purpose.

Figure 2b illustrates a basic block that was modified by a marking step. Compared to the original
block in Figure 2a, Figure 2b has two additional vpblendd instructions. These vpblendd instructions
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contain the hexadecimal value 0x2e, which is the decimal value 46. This allows us to determine
that native basic block 34, as reported by VTune, corresponds to the Graal LIR block 46.

Graal Compiler

— Register
Inlining Allocation
. Loop Emit
Source Load High-level : HIR to Low-level Constant i
Code Bytecode H HIR }—» Optimizations Transformations Optimizations Load I\g)tgée
Dead Code Slowdown
Elimination Phase

Fig. 3. Sketch of the Graal compiler pipeline, going from source code to emitting native code. Our slowdown
phases is one of the last low-level optimizations, after all high-level optimizations, such as inlining and loop
transformations happened, and thus, does not impact them.

4.4.2  Slowdown Phase. The slowdown phase is used by the divining and profiling steps to insert
a specified number of instructions that slowdown a basic block, without otherwise changing the
block’s behavior. This is implemented using a JSON file that includes for each compilation unit
how many slowdown instructions need to be inserted for each specific basic block. The slowdown
phase reads the JSON file named by a command-line option.

This phase is inserted late in the lower-level optimizations; after register allocations and constants
loads, as illustrated in Figure 3. Therefore, slowdown instructions are added only after all major
code transformations, such as inlining, loop transformations, and dead code elimination, have taken
place. This avoids changing any high-level optimization decisions avoiding unintended behavioral
changes. The slowdown phase loads the JSON file and reads the per-block information for the
current compilation unit. For each basic block for that it has information, it inserts the specified
number of mov reg, reg instructions. A mov to the same register consumes CPU cycles on the
Intel Core i5-10600 we use, but has no other effect. We investigated other instructions, and found
2-byte NOPs to be the only other viable option [Burchell and Marr 2025b].

Figure 2c shows a slowed-down version of a machine code basic block. The slowdown phase
inserted mov instructions on lines 3 and 5. Each mov operates on a different register and they are
evenly distributed throughout the basic block as much as possible.

Register Rotation to Prevent Pipeline Stalling. When multiple instructions use the same registers,
they have to be carefully serialized by the CPU, which can cause pipeline stalling. This can induce
much higher overhead than intended, since it limits for instance the amount of out-of-order
execution that can happen. To prevent such pipeline stalling, we rotate the registers used in
the mov instructions. We tested this approach on a Core 15-10600 with Skylake architecture, and
assume it works on others. However, microarchitectures vary sufficiently so that the exact register
selection strategy may need to be adjusted for specific pipelining, register renaming, and other
microarchitecture optimizations based on the used CPU.

Distributing Slowdown Instructions Within Blocks. In addition to using multiple registers, we also
aim to distribute slowdown instructions evenly throughout a block whenever possible. For example,
if a block contains ten instructions and requires ten slowdown instructions, we intersperse the
slowdown instructions with the existing ones rather than clustering them at the start or end.

This is important for blocks containing code from different methods, or where instruction have
no debugging information. As alluded to in Section 2.1, profilers use debugging information to
determine at an instruction level, which method an instruction belongs to. Thus, our slowdown
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instructions must not alter existing debugging information, and make sure that slowdown instruc-
tions are correctly attributed. If our slowdown would alter existing debugging information, it could
change the profiler’s results e.g., causing run time to be attributed to wrong methods. To minimize
this risk, we do not set any debugging information for our slowdown instructions and intersperse
them as evenly as possible with existing instructions. However, this approach is not without its
limitations, as discussed in Section 7.1.4.

5 Evaluation Methodology

We evaluate our approach to approximating a ground truth profile with three research questions.
The goal is confirm its suitability and investigate the accuracy of four JVM sampling profilers. First,
we outline the research questions and then the experimental setup.

5.1 Research Questions

The first two questions assess whether our slowdown-based approach works as intended. The third
question aims to evaluate our approach to approximating the ground truth and assess accuracy.

RQ1: Does machine-level slowdown at the block level result in an accurately slowed-down program?
With RQ1, we test whether slowing down programs using hardware-counter-based feedback leads
to a proportional slowdown in all desired blocks. Additionally, we evaluate whether this approach
is effective across all 14 of our benchmarks, ensuring a desired slowdown rate.

RQ2: Do sampling-based profilers report the same percentage of run time for identified methods
regardless of program slowdown? Having confirmed a proportional slowdown, we test whether
our approach maintains the original performance behavior of the program. For this, we expect
that our approach does not influence major compiler optimizations and minimizes impact on the
performance behavior at the microarchitecture level. Thus, sampling-based profiler’s should report
the same percentage of time being spent in each method for a program with and without slowdown.
We expect this, because the percentage of run time is relative to the total execution time, and all
relevant basic blocks of the program are slowed down proportionally, if RQ1 holds.

RQ3: Do sampling-based profilers accurately detect changes to a slowed-down method? We test the
ability of sampling-based profilers to detect substantial changes to the performance of a program
part. When slowing down a specific block in a method, we expect profilers to detect the increased
run time of that method and report an accurate time increase.

Slowdown Granularity. Our approach to slowing down basic blocks is limited by suitable machine
instructions. Thus, while we would ideally want to slow down basic blocks with arbitrarily small
amounts to approximate the ground truth precisely, mov instructions were the most reliable smallest
instruction on the used microarchitecture.

This means, our approach is in practice not able to approach a close-to-zero overhead to achieve
the greatest degree of precision. Furthermore, our experiments are limited by the hardware we
have available and the time it takes to divine the needed slowdowns. As a practical tradeoff, we
thus chose to use three slowdowns, 50%, 100%, and 150% based on our argument in Section 4.1.
When experimenting with slowdowns, these gave good results, avoiding too small slowdowns that
cannot be created reliably with a mov instruction, and spaced out enough to see a possible impact,
for instance on the microarchitectural performance behavior.

5.2 Experimental Setup

Given the complexity of modern systems, our experimental setup aims to minimize nondetermin-
istic interference from the system, and the software components under our control. Since our
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implementation is relying on microarchitecture-specific behavior, we run all experiments on a
single machine to ensure consistent results. Furthermore, since we are using a system with JIT
compilation, we run all benchmarks for 500 iterations to account for warmup [Barrett et al. 2017].
We also verified the benchmarks are fully compiled very early, after one or two iterations. Further-
more, each experiment is run 10 times. We disabled dynamic frequency scaling and maximized the
process priority to minimize measurement noise.

Selected Benchmarks. As benchmarks we chose the Are We Fast Yet benchmarks [Marr et al. 2016],
because they are fully deterministic Java programs, representing what we believe to be the best case
for Java profilers. The suite includes 5 macro-benchmarks and 9 micro-benchmarks, which made it
feasible for us to investigate any compilation issues and ensure that slowdown is applied accurately.
While larger benchmark suites such as DaCapo [Blackburn et al. 2025] and Renaissance [Prokopec
et al. 2019] would be preferable, due to their size and complexity, the additional engineering effort
needed to investigate any issues was beyond what we were able to do.

To achieve practical run times with low noise levels, we configured the benchmarks such that a
single iteration takes approximately 100ms.

Selected Sampling-Based Profilers. We selected four actively maintained JVM sampling-based
profilers for our experiments. We configure 10ms as sampling rate, i.e., the rate at which they
collect call stacks. 10ms is the default rate for most of them, and thus, is what developers would
often use. The profilers are:

e Async-profiler v3.0:” An open-source project aimed at providing low-overhead sampling
without safepoint bias.

e Java Flight Recorder (JFR), OpenJDK 21.0.2:1° Part of the Open]DK, it can collect run-time
statistics and supports sampling-based profiling.

e JProfiler 14.0.5:"! A commercial profiler, advertised as a comprehensive all-in one tool.

e YourKit 2024.9:'2 A commercial profiler, advertised as a fully featured low overhead tool.

Hardware and Software Configuration. All experiments were performed on a machine with a
Intel(R) Core(TM) i5-10600 CPU with 6 cores and 3.30 GHz, 16 GB RAM, on Rocky Linux 9.4 with
Kernel Version 5.14.0. All experiments ran on top of OpenJDK 21.0.2 with the HotSpot JVM. We
used our modified version of the Graal compiler, which is build on a version from August 2024.'*

Compiler Configuration. We use Graal in its libgraal configuration, which means the compiler
itself is ahead-of-time-compiled to ensure optimal compilation times.

To reduce nondeterminism, we use Graal’s support for compilation replay, only JIT compile
Java code with Graal’s highest tier setting, and disable background compilation. Compiler replay
creates a log files of compilation decisions during execution, which is then used in subsequent runs,
to enable the compiler to replicate previous decisions for the same benchmark. This significantly
improves the consistency in the resulting machine code across runs, simplifying our experiments.
We use this replay feature for all three steps of the process, i.e., preamble, diving, and profiling.

By disabling tiered compilation with the -XX:-TieredCompilation flag, only the highest com-
piler tier is used. While this has performance tradeoffs for production settings, in our case and for
the selected benchmarks it does not. It merely avoids us having to support other compiler tiers.

“https://github.com/async-profiler/async-profiler/releases/tag/v3.0
©Ohttps://openjdk.org/jeps/328

Uhttps://www.ej-technologies.com/jprofiler

R2https://www.yourkit.com/
Bhttps://github.com/oracle/graal/commit/049d6d3ab565c74549a590a4b744077a45£7527e
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We also disable background compilation, which means that the application thread waits for the
compilation to be available when it is triggered. This reduces nondeterminism between application
and compiler threads, since application threads do not continue to collect profiling information.

By reducing nondeterminism, we also ensure that different runs of a benchmark result in the
same LIR and native code basic blocks, so that markers are valid and our slowdown can be applied
consistently. To ensure that the Graal compiler generates machine code as similarly as possible
across runs, we set a few more flags. Minor nondeterminism can result in code being generated
at different addresses, which results in Graal adding a different number of NOP instructions for
alignment. We disabled the alignment by setting -Djdk.graal.IsolatedLoopHeaderAlignment=0
and -Djdk.graal.LoopHeaderAlignment=0. This simplified mapping LIR blocks to machine code
blocks. The performance differs by 1% on our benchmarks, and thus is minimal. For certain language
features such as stack overflow checks, the compiler would also add NOP instructions for alignment.
Since this leads to a feedback loop with our insertion of slowdown instructions, we disabled it by
adding a new -Djdk.graal.DisableCodeEntryAlignment=true flag.

Finally, to give profilers the best chance to map native to source code and correctly attribute
run time to methods in a profile, we set the -XX:+DebugNonSafepoints for all profilers. This
insures that debug information is not only generated for safepoints. Profilers like Async-profiler
explicitly enable this functionality themselves to ensure that they can report the best possible
profiles. Section 7.1.1 briefly discusses the flag’s tradeoffs.

We believe all these precautions together enable a statistically meaningful comparison between
profiles, thus allowing us to establish an approximated ground truth that reflects a consistent
program behavior and enables comparisons with a consistent baseline.

6 Results

This section presents our experiments and answer the research questions of Section 5.1.

6.1 Experiment 1: The Effect of Slowdown on Program and Basic Block Run Time

To answer RQ1, i.e., whether our approach to slowing down programs gives accurate results, we
examine its impact on overall benchmark run time and the slowdown at the basic-block level.

As Figure 4a shows, we can successfully slowdown the Are We Fast Yet benchmarks and the
overall run time increase for these benchmarks is close to the target slowdown. The figure shows
median overhead of 10 runs for each benchmark at a target overhead of 50%, 100%, and 150%. The
benchmarks were run without using any profiling tools, and report the results as measured by the
Are We Fast Yet benchmark harness. While the median run time overhead across all benchmarks is
50.0%, 100.0%, and 146.8%, respectively. Table 4 in the appendix shows the achieved overheads for
each benchmark. The benchmarks with the largest difference from the target are DeltaBlue, with a
139.5% slowdown for a 150% target, and Havlak, with a 115.0% slowdown for the 100% target.

To assess the slowdowns of basic blocks, Figure 4b shows a weighted histogram over all bench-
marks for the target slowdown of 100%. The y-axis shows the percentage of benchmark run time the
basic blocks contribute. The x-axis shows how close they are to the target slowdown in percentage
points. The basic block time was measured with VTune’s hardware-counter sampling support.

We can see that the basic blocks that dominate a benchmark’s run time are indeed close to the
target slowdown. However, other blocks can be much slower or faster than they should be. This
is often the case for small basic blocks, where adding a single instruction changes the run time
significantly. However, we also see that the basic blocks that have too much slowdown are roughly
balanced out by the blocks that have to few slowdown. Note, we limited the histogram to the
range of —100 to 100%pt for readability, there are a few more outliers, but they have insignificant
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(a) Box plot of the median overheads for the 14 (b) The histogram shows the distribution of

benchmarks at 50%, 100%, and 150% slowdown. For  overhead differences from the target slowdown of

each benchmark, we took the median of 10 runs at ~ 100% across all benchmarks. The x-axis represents

the target slowdown, comparing it to the median of  the difference in percentage points. The y-axis shows

10 runs without slowdown. Overall, the benchmarks the percentage of benchmark run time. The results

are successfully slowed down. show that the majority of run time is spent in blocks
with overheads close to the target slowdown.

Fig. 4. The results of experiment 1 show the median overheads at the benchmark level as well as the basic-
block level are on target, which means that our approach to slowing down programs preserves program
behavior effectively.

contributions to a benchmark’s run time. Figures 7 and 8 in the appendix show the histograms for
the 50% and 150% target slowdowns.

Overall, we can successfully and proportionally slowdown programs as intended and answer
RQ1 positively. Especially the basic blocks that make significant contributions to a benchmarks
run time are slowed down accurately, and thus, profilers should see them as such. As discussed in
Section 3, previous work inserted slowdown at the bytecode level. For completeness, Section 7.3
reports on our experiments with this approach, and why it would not be suitable in the context of
a state-of-the-art JIT compiler.

6.2 Experiment 2: The Effect of Block Slowdown on Profilers Reported Methods

To answer RQ2 on whether sampling-based profilers report the same run-time percentage for
slowdown programs, we run the benchmarks with the slowdown configuration files and the
sampling profilers. If the profilers are accurate, the percentage of time spent in each method should
remain unchanged, given that the most relevant basic blocks achieve the target slowdown.

Figure 5 shows the median percentage of run time for each of the five hottest methods of each
of the 14 benchmarks on a scatter plot. We compare the method’s normal percentage (without
slowdown) with its slowed-down percentage. Methods where the percentages match as expected
appear along the X =Y diagonal line.

The results indicate that the majority of methods are close to the X = Y line, i.e, the run
time percentage profilers attribute to these methods remains unchanged. This suggests that our
approach to slowing down benchmarks works regardless of whether a method contributes a smaller
or larger proportion of the total run time, and independent of the target slowdown. However, the
List benchmark is a clear outlier, and we discuss it further below.
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Fig. 5. A scatter plot for each profiler with the median percentage of run time for each of the top five methods
in each of the 14 benchmarks. The diagonal X =Y line indicates that a method’s run-time percentage remains
the same under slowdown and no-slowdown. The plot shows results for 50%, 100%, and 150% slowdown.

Table 1. Correlation and deviation statistics for each profiler. If there is no change between normal and

slowed-down runs, the correlation coefficient would be 1.

Correlation Deviated >5%pt  Benchmark Worst Case
Profiler  Coefficient = #Methods (%)  of Worst Case Deviation (%)
Async 0.9828 25 (11.85%) List 24.93
JFR 0.9848 28 (12.02%) List 25.30
JProfiler 0.9652 31 (14.03%) NBody 39.25
YourKit 0.9821 29 (12.89%) List 25.62

Summary Statistics. To summarize Figure 5 and answer RQ2, we look at the correlation coefficient
between the report run times for a method, and analyze how strong the deviation is from the
expected run time in Table 1. By looking at the correlation between slowed-down and normal
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run time, we can determine how well slowdown preserves the overall run-time proportions. A
correlation coefficient of 1 would indicate no change of proportions. JFR has the highest correlation
of 0.9848. JProfiler had the lowest correlation coefficient of 0.9652, indicating some deviations but
still a strong correlation.

We see that our approach of machine code slowdown maintains the original performance
behavior. It does not significantly alter the underlying program execution and therefore preserves
the program’s ground truth. From these results, we conclude for RQ2 that our approach maintains
run-time proportions well.

To look closer at the deviations, we count all methods where the run time percentage differs by
more than 5%pt. Given that our benchmarking has always some noise, we chose 5%pt is a good
middle ground. JProfiler reports for 31 methods (14.03% of all) a run time that deviates by more
than 5% from the expected run time, with NBody having the worst case method with about 39%
deviation. For the other profilers, the affected number of methods is slightly smaller, but the List
benchmark is consistently affected by a deviation of about 25%.

As discussed in Section 3, profilers can have sampling bias. In Section 7.2.7, we check whether
this is an issue for our experiments and find that it is unlikely to have any significant impact.

Inaccurate Run Time Attribution for List Benchmark. Based on our investigations, the deviation
in List is most likely caused by us inserting slowdown instructions without debugging information.
As outlined in Section 4.4.2, we mix the slowdown into the blocks and do not assign debugging
information. Instead, we rely on profilers using their heuristics to determine debugging information.

While Graal produces debugging information for most instructions, some end up without. Table 2
shows the number of LIR instructions for each benchmark without slowdown. We only include data
relevant for the performance of the benchmark, thus, only data from basic blocks that contribute
at least 0.001 seconds are included. Note, this data reflects LIR, not machine code instructions. As
explained in Section 4.4, a single LIR instruction may emit multiple machine code instructions.

Table 2. LIR instruction debug information ratio for the Are We Fast Yet benchmarks. The table includes only
executed compilation units that have at least one block contributing 0.001 seconds of run time.

Benchmark Comp. Unit LIR Blocks LIR Instructions Instructions With Debug Info  Ratio (%)

Bounce 1 14 256 223 87.11
List 1 27 273 193 70.70
Mandelbrot 1 19 111 84 75.68
NBody 1 6 1115 995 89.24
Permute 1 10 96 69 71.88
Queens 1 65 560 464 82.86
Sieve 1 8 160 139 86.88
Storage 2 37 875 606 69.26
Towers 1 19 320 273 85.31
CD 9 263 4159 3290 79.11
DeltaBlue 5 117 4851 3480 71.74
Havlak 9 319 8327 6208 74.55
Json 10 744 8155 6676 81.86
Richards 5 118 723 615 85.06

As shown in Table 2, the List benchmark has the lowest ratio of debugging information to total
LIR instructions. This could explain why profilers misattribute run time. We further investigate
this in experiment 3 by assigning debugging information to slowdowns.
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6.3 Experiment 3: Can Profilers Detect Individual Blocks Being Slowed Down?

Finally, to address RQ3 of whether sampling profilers accurately detect slowdown, we test whether
they can detect individual basic blocks being slowed down. We select blocks that contain instructions
of only one method and inserted slowdown to increase the total benchmark run time by 5 seconds to
assess whether the change is detected, the expected additional run time is measured, and attributed
to the correct method.

As seen in Section 6.2, debugging information is required to correctly attribute a program’s run
time. While some instructions in a block may have debugging information, others may lack it. For
such instructions, profilers need to infer the debugging information. As discussed in Section 2.1,
profilers could simply assume such an instructions belongs to the root method of a compilation
unit. However, inlining and code motion can mean the code originates from a different method and
such a simple heuristic would misattribute run time.

6.3.1 Experimental Setup. Compared to the previous experiments, this one needs additional setup.

Debugging Information. To see how profilers handle ideal situations, we assign the same debug-
ging information to our slowdown instructions that the other instructions have. Furthermore, we
place slowdown instructions right before the first instruction in the block with valid debugging
information, which means from the profiler’s and compiler’s perspective debugging information
remains unchanged and only the number of instructions increases.

Block Selection. For this experiment, we identified the basic blocks that have instructions from
a single method, based on the LIR instructions source information. Additionally, we considered
blocks that consumed at least 0.2 seconds, but preferred blocks that took most time. The goal was
to select blocks that are important for the benchmark’s execution, and do only require a small
slowdown to add 5 seconds to the overall run time. This avoids making the experiment unrealistic,
and changing the overall performance behavior, e.g., by introducing pipeline stalling. At the same
time, we keep the introduced slowdown lower, which allows us to approximate the ground truth
more precisely as argued in Section 5.1.

We selected suitable blocks for the experiment manually, which was time consuming. Conse-
quently, we focused on four benchmarks: two larger ones with multiple computation units, Havlak
and Json, and two smaller ones, Richards and List. We included List to further investigate the
incorrect attribution of slowdowns. For each of our benchmarks, we selected three blocks as target
blocks. The full list is in the appendix in Table 5.

Target Slowdown. To make the target slowdown independent of profilers, we aim to add 5 seconds
to the time our 500 iterations of a benchmark take. This is a run time increase of 5%-15% percent
on the selected benchmarks and should change the time reported for a corresponding method by
3-12 percentage points. Furthermore, this type of performance change is similar to slowdowns
that may be introduced accidentally and developers may want to detect in practice.

Experimental Execution. For each target block, we ran 10 invocations of the standard benchmark
setup with the applied slowdown and 10 without slowdown for comparison. We then used the
median run time and the percentage of total run time for each method in our analysis going forward.

6.3.2 Results.

Overall Results. Table 3 summarizes the results. Overall, Async-profiler, JFR, and YourKit detect
the changes comparably accurately, where Async-profiler and JFR have a detection rate of 83.33%
each. JProfiler however detects only 16.67% of the changes. In the majority of tests, JProfiler
either did not detect the target method as contributing any run time or incorrectly attributed the
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additional run time to a different method. To assess the accuracy of a detected change, we determine
a prediction error. For the methods JProfiler identified correctly, it reported on average a percentage
of run time that is off by 17.91%pt.

Table 3. Summary of profiler performance in detecting slowed-down methods.

Detected Positive Change  prediction

Profiler = Target Methods Target Methods  Accuracy (%) Error (%)

Async 12 11 83.33 1.38

JFR 12 11 83.33 2.18

JProfiler 12 5 16.67 17.91

YourKit 12 11 75.00 1.72

Async JFR JProfiler YourKit
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Fig. 6. Change in the percentage of run time with 5 seconds of slowdown added to Vector.hasSome. The
baseline without slowdown is at 0. The red dashed line indicates the expected change in % of run time. The
target method is shown in red.

Example with Mixed Results. To illustrate the experiment, Figure 6 shows the results for one
block in the Vector.hasSome method being slowed down in the Havlak benchmark. We show the
change in the percentage of run time as reported by the four profilers. We also indicate the expected
change in run time percentage with a red dashed line. Async-profiler and JFR indeed attribute the
change relatively accurately to Vector.hasSome. JProfiler however attributes the increased run
time completely to Vector. forEach. YourKit did not manage to attribute the additional run time
to any method in particular.

Noteworthy Misattributions. One of the basic blocks we slowed down is in a Java lambda function,
and none of the profilers correctly identified the lambda as target method. All profilers assigned the
additional time to other methods. We suspect that incomplete debugging information or incorrect
parsing of it might cause the issue.

In other cases, profilers misattributed the additional run time of an inlined method to its caller.
This suggests that the profiler did not process all debugging information and merely used the
metadata of the overall compilation unit. Thus, one problem might be that profilers are not taking
into account all available details.

For the List benchmark, we found that Async-profiler, YourKit, and JFR failed to identify an
increase in run time for block 2, within the List.tail method and attributed it to another method.
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They all either reported a reduction in run time or only a small change, which is at the level of the
measurement noise. However, since we set debugging information explicitly, this misattribution
must be caused by something else. An alternative cause could be sampling skid. Sampling-based
profilers may incorrectly identify the executing method because of a delay between the triggering
of the sample and recording it. If this skid introduces bias, sampling results may misrepresent the
distribution of execution time and result in inaccurate profiles.'*

Conclusion. To answer RQ3 on whether sampling-based profilers accurately detect slowed-down
methods, we find that, depending on the profiler, they can be fairly accurate. However, we also
find examples where these profilers have major issues in detecting and attributing the slowdowns
accurately. At the same time, when a profiler correctly identifies the target method, our predictions
for the expected change in run time are accurate for three of the four profilers. This suggests that
our approach to deliberately adding a specific amount of execution time is reliable and produces
consistent results. Arguably, this shows that our proposed methodology is valuable and can be
used to guide the future development and improvement of profilers.

7 Discussion

This section discusses issues that can affect our results or deserve attention in future work.

7.1 Compiler-Generated Debugging Information

Handling debugging information for our experiments turned out to be nontrivial and the following
section gives an overview of the concerns.

7.1.1  Tradeoffs of DebugNonSafepoints. In our experiments, we found that setting the DebugNon-
Safepoints flag (see Section 5.2) to ensure more debugging information is generated is important
for JFR’s and JProfiler’s accuracy. For example, without extra debugging information, JFR found
only 7 out of the 12 target methods in experiment 3 (see Section 6.3) and detected the added run
time for only 4 of them. Unfortunately, the additional debugging information uses memory and
might slightly increase compilation time, which in turn could result in a slower warmup. Because
of the additional memory use, JFR does not automatically enable the flag.!> The JFR team aims to
provide a tool that can be used in production with only minimal overhead even on pathological
cases, and thus, choose other tradeoffs than for instance Async-profiler, which enables the flag.

7.1.2  Instructions Without Debugging Information. Despite using the DebugNonSafepoints flag, the
sampling profilers reported large differences in profiles for the List benchmark, when comparing
different levels of slowdown, because of incomplete debugging information (see Section 6.2), which
is used to identify the source code a specific machine instruction corresponds to. Unfortunately,
inlining in combination with other optimizations can obscure method boundaries, reducing the
accuracy of range-based method attribution. For instance, loop fusion can combine loops from
different methods possibly resulting in a single instruction implementing multiple source lines
from different files. This violates the assumption that there is a 1-to-1 mapping from machine to
source code, possibly leading the compiler to drop some debugging information. In other cases, e.g.
for garbage collection write barriers or register spill and move operations generated by a register
allocator, it many not have debugging information to begin with.

Without debugging information, profilers fall back to the information for neighboring instruc-
tions, which can lead to misattribution of run time and thus, poor accuracy. In our experiments, we
also saw different profilers attributing run time to different methods in such cases, which suggests

4https://psy-lob-saw.blogspot.com/2016/06/the-pros-and-cons-of-agct.html
158307057 JFR: Enable -XX:+DebugNonSafepoints when JFR starts https://github.com/openjdk/jdk/pull/14147
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that they use different techniques to access debugging information or heuristics to determine the
corresponding method.

7.1.3 Challenges of Tracking Accurate Debugging Information. One of the main problems for
debugging information is that there does not seem to be a single suitable solution. As mentioned
above, compiler optimizations lead to situations where there is no 1-to-1 mapping between machine
and source code. A Java stepping debugger can rely on deoptimization to obtain the needed
information, a profiler however will want to use the have information without introducing run-time
overhead. Similarly, for implementation-level concepts such as garbage collection write barriers
and operations generated by a register allocator, different use cases may benefit from different
options of how to attribute them to a source program.

To improve the situation for profilers, we would suggest to maintain multiple source locations
when sources get merged, and generate debugging information also for instructions produced
purely for implementation-level concepts. When an optimization merge source locations, one could
preserve several source origins, instead of choosing one arbitrarily or none at all. Profilers could
then attribute the observed cost across all origins, yielding a fairer picture of run-time behavior.
Similarly, depending on the use case, even a coarse mapping, such as attributing a register-shuffle
to the enclosing basic block would be more useful than leaving the source unidentified.

7.1.4  Debugging Information for Slowdown Instructions. As mentioned above, because of the
various compiler optimizations, basic blocks can end up with instructions from multiple methods
and possibly without debugging information. To avoid biasing profiles, we need to ensure that
slowdown instructions are attributed to the correct method. For experiment 1 and 2, we added
slowdown instructions to all relevant blocks evenly distributed between instructions, but did not
assign debugging information. This approach gave sufficiently accurate results to slow down the
benchmarks. In contrast, for experiment 3 we assigned debugging information of the target method
to slowdown instructions and inserted them contiguously, i.e., without interleaving with the other
instructions. This is a best case for profilers and allowed us to test whether a profiler could detect a
change in a single method.

For experiment 1 and 2, we considered inserting slowdown instructions and debugging infor-
mation proportionally based on existing debugging information and the per-instruction run time
information we get via VTune from the hardware counters. Unfortunately, the instruction-level
information does not seem precise and reliable enough as discussed further in Section 7.2.3. Thus,
we decided to rely only on basic-block-level data, which gave good results. We also considered
assigning debugging information to slowdown instructions, but disregarded the idea because it
could unintentionally alter the attribution of instructions without debugging information, which
would bias the results based on our slowdown insertion.

7.2 Hardware- and JVM-Related Factors Affecting Accuracy

The hardware and JVM can also have an impact on accuracy, as we discuss next.

7.2.1 Biased Sampling Skid. Sampling profilers can also misattribute run time because of biased
sampling skid. Sampling skid is the delay between signaling the JVM to halt for a sample and
collecting the instruction pointer. During this delay, execution continues for a few instructions,
advancing the instruction pointer. If the skid is consistent, we still obtain samples that represent
how the program spends its time. However, the skid is likely variable and dependent on microar-
chitectural factors [Xu et al. 2019]. Therefore, it can bias samples, which then do not have the
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uniform probability needed to correctly reflect a program’s profile.'® Some profilers try to mitigate

biased skid with more precise timing mechanisms or inducing jitter into the delay to increase the
randomness of samples [Gregg 2013].

7.2.2  Microarchitecture-Specific Slowdown. As outlined in Section 4, the divining process creates a
slowdown file specific to the program itself and the machine on which it was generated. If you
attempt to use a slowdown file created on one machine for the same program on a different machine,
unless both machines share the exact same CPU specification, the slowdown is unlikely to be as
accurate and may introduce bias in how slowdown is distributed across blocks.

This is because the divining process relies on timing information from sampling hardware
counters to determine how long it takes to execute a given basic block. These timing measurements
capture factors such as pipelining, out-of-order execution, memory access latency, and other
microarchitect mechanisms. One example of this limitation is our use of register rotations. This
technique is unlikely to be transferable between different CPUs, as different architectures have
varying amounts and types of registers, along with different policies for register renaming.

As a result, slowdown files would unlikely be accurate when transfers between machines with
different microarchitectures. Instead, the divining process must be repeated for each target machine
to ensure that the slowdown remains accurately distributed across all basic blocks.

7.2.3  Accuracy of Sampling Hardware Counters. Our basic-block-level slowdowns relies on the
CPU’s sampling hardware counters. Although profilers like VTune report timing information at
the instruction level, while implementing our slowdown approach, we saw various issues that
suggested that for instance instruction skid and sampling the pipelined out-of-order execution can
lead to misattribution at the instruction level [Xu et al. 2019]. Consequently, we rely on timing
information at the basic-block level. In our experience, the timing information is sufficiently
accurate. Furthermore, our experiments indicate that for most profilers, methods, and benchmarks,
the proportion of time spent in a method remains consistent regardless of the slowdown (RQ2).
If block-level timing were too inaccurate, we would end up slowing down blocks to unreliably
to achieve the observed consistency of slowdowns. Since 13 of 14 benchmarks show no major
deviations in the run time percentage of methods, we are confident that we have correctly identified
the relevant blocks and proportionally increased their run time. Additionally, our collected block-
level timings correlate well with the total run time of each benchmark. If the block-level information
were incorrect, we would expect to see significant discrepancies between the actual run time and
the targeted slowdown.

7.2.4  Inaccuracy for Small Blocks. Experiment 1 identified the distribution of slowdown overhead
across basic blocks. For the blocks that contribute most to total run time, the overhead was close to
the target. However, for small blocks, the slowdown can be smaller or larger than required. While
in our experiments, this was restricted to blocks that contribute only a minor part of the overall run
time, it remains a conceptual issue. These inaccuracies arise from the smallest slowdown we can
insert and from the sampling granularity of the hardware counters. For example, adding a single
mov to a small block my increase its run time by 200% instead of the intended 100%.

Raising the target slowdown, e.g., to 500 %, would bring these blocks closer to the target, but
this would also lengthen both the divining and benchmarking phases. In future work, one could
experiment with alternative slowdown instructions and with placing them at different positions
inside the basic block. Our measurements show that placement matters, likely due to out-of-order
execution and instruction retirement. For the very smallest blocks, inserting an instruction, which

18The Pros and Cons of AsyncGetCallTrace Profilers: Error Margin: Skidding + inlining: https://psy-lob-saw.blogspot.com/
2016/06/the-pros-and-cons-of-agct.html
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the micro-architecture can optimize, might let us apply a smaller slowdown. A systematic approach
could use throughput prediction [Abel and Reineke 2022] to select instruction sequences that
increase block latency while preserving semantics.

7.2.5  Run-Time Overhead of VTune. We also examined the overhead introduced by VTune during
the divining process. There may be concerns that if the overhead of VTune is significant, it could
impact the accuracy of the timing information for block. To evaluate this, we ran each benchmark
10 times, once with no tools attached and once with VTune in hardware event sampling mode
with stack collection, using the exact same setup as in the divining process. Our results show that
the median overhead across all runs and benchmarks is 2.35%, with a minimum of 0.29% and a
maximum of 5.88%. The results give us confidence that VTune’s impact on the benchmark run time
is unlikely to significantly affect the accuracy of our results. While some inaccuracies might arise
from this overhead, it remains well below the slowdown we introduce. A full breakdown of these
overhead per benchmark can be found in Figure 9 in the appendix.

7.2.6  Using a Static Performance Model Instead of an Instruction Profiler. Instead of relying on
sampling hardware counter, we could statistically estimate the cost of instructions based on
individual instruction costs [Fog 2022] to determine the needed slowdown. If these estimates were
accurate, the slowdown divining process could complete quicker. Unfortunately, these estimates are
not reliable enough for our purposes, because they cannot account for changing costs of memory
accesses, such as cache misses, out-of-order [Tomasulo 1967] or pipelined execution [Shen and
Lipasti 2005], which have a significant impact on performance. Consequently, we rely on sampling
of hardware counters for are a more accurate reflection of execution time of each block.

7.2.7 Sampling and Safepoint Bias. One of the key observations by Mytkowicz et al. [2010] was that
JVM profilers can suffer from safepoint bias. While safepoints come with debugging information
that profilers need, they are not uniformly distributed throughout the program, which makes
profiles relying on them less representative of the actual performance behavior.

Since this may influence our results, we assessed the extent to which the profilers that we used
are susceptible to safepoint bias and how it may influence our results. For this experiment, we
disabled safepoint insertion in the Graal compiler, essentially removing all safepoints and their
debugging information. We then compared the results of our four sampling profilers on the 14
Are We Fast Yet benchmarks with the results from the normal Graal version with safepoints. Each
benchmark was run 10 times with and 10 times without safepoints.

The results are shown in Figure 10 in the appendix. We plotted the absolute change in the
percentage of run time attributed to each method. This means, if methodA originally accounts for
100% of execution time but drops to 0% after disabling safepoints and that time shifts entirely to
methodB, we report an absolute change of 200%.

Our findings show that most benchmarks see only a small change of 5-10% on all profilers. Thus,
safepoint bias has limited impact. However, JFR and JProfiler seems to have stronger a safepoint
bias on some benchmarks. For Mandelbrot, we see changes of nearly 200%. With safepoints enabled,
the profiles attribute most execution time to the mandelbrot() method. Without safepoints, the
profilers attribute most time to the innerBenchmarkLoop () in the benchmark harness. We assume
that without the debugging information of the safepoint in mandelbrot(), JFR and JProfiler fell
back to the source information of the entry point into the compilation unit, which attributes the run
time to the wrong method. In JFR’s default configuration, safepoint bias is noticeable in Mandelbrot,
Storage, Towers, CD, Richards. However, enabling DebugNonSafepoints, significantly reduces the
bias, leaving only Storage showing substantial change after safepoint removal.
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In conclusion, while samplers are not as dependent on safepoints as in the past, benchmarks
with inlining and tight inner loops, can still suffer from misattribution. Though, since our approach
uses hardware counters instead of JVM sampling, safepoint bias does not invalidate the approach,
and only shows up as profiler inaccuracy.

7.3 State-of-the-Art JIT Compilers and Bytecode-level Slowdown Insertion

As discussed in Section 3, previous work experimented with inserting slowdown at the bytecode
level. In a state-of-the-art JIT compiler such as Graal, we find that this approach does not work reli-
ably anymore. We experimented with it for completeness and inserted loops computing Fibonacci
sequences as described by Mytkowicz et al. [2010], into the hottest methods of our benchmarks,
to test whether profilers could detect the slowed-down methods. Because Graal does many op-
timizations, including loop unrolling, whether and where slowdown was observable depended
on specifics of the inserted code, including the number of loop iterations and whether values
where constants, and whether the computed sequence is merely stored or used subsequently. For
example, for iterations below 1000, Graal combined optimizations such as loop unrolling and
constant folding, to compute the result at compilation time. However, with the number of iterations
being higher, slowdown was more reliable, but rarely attributed to the correct method. Instead of
merely attributing it to the target method, other methods also received additionally time, because
of inlining and loop transformations that moved the computation. Furthermore, because it required
the use of high iteration counts, the granularity of the slowdown is too coarse and imprecise for
our use case. Thus, inserting slowdown after all high-level optimizations, and as one as the final
steps in the compilation (see Figure 3) is more reliable.

7.4 Generalizing to Other Systems and Languages

Our methodology is applicable to a wide range of systems and languages. While we performed our
experiments with Java, Graal, and VTune, the ideas apply directly to other just-in-time compilers
and languages using them, e.g., JavaScript with V8 or Python with PyPy, because we do not rely
on any Graal-specific mechanism. Furthermore, because the slowdown injection and profiler-
evaluation operate solely at the machine-code and hardware-counter level, one can apply them to
ahead-of-time (AOT) compiling systems such as GCC or Clang. VTune can also be replaced, e.g.,
by Linux’s perf, to obtain the relevant data. In short, any environment with a compiler malleable
enough to insert instruction-level slowdown based on hardware-counter information can adopt
our profiler evaluation methodology.

7.5 Overall Divining Time and Future Optimization Opportunities

The overall divining process, as detailed in Section 4.2, is currently fairly time consuming. Deter-
mining how much slowdown to add to slowdown all 14 Are We Fast Yet benchmarks by 100% takes
3.75 days. The divining for all three slowdown speeds required a total of 10.88 days. Table 6 in the
appendix provides a detailed break down with the number of compilation units and basic blocks
for each benchmark. Per slowdown speed, it shows the number of runs required to fully divine all
blocks, the total time it took, the overall number of slowdown instructions inserted (column Total),
as well as the median number of instructions inserted into a basic block.

The time required varies and is proportional to the number of blocks and the number of compila-
tion units. The time is proportional to the number of compilation units because our implementation
divines each compilation unit separately. This was originally done for debugging purposes. How-
ever, divining all compilation units simultaneously slows down every unit and block at once making
each iteration of divining slower. As one approaches the final slowdown amount, each iteration runs
very close to the target speed, meaning the fine-tuning stage would likely be more time-consuming.
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While slowdown is inserted incrementally, and ramps up as thresholds are hit, future work
could explore coarser-grained strategies. For instance, a more aggressive binary search could be
implemented, which could reduce the number of runs needed during the divining process.

Faster divining would be useful for future applications of our approach, for instance, for a
variation of virtual speedup [Curtsinger and Berger 2015] or race detection [Endo and Meller 2025]
based on inserting slowdown instructions.

7.6 Experimental Time and Effort

In addition to the diving itself, running all benchmarks for our research questions took about 139h,
i.e., 5.79 days. Table 7 in the appendix shows our estimate and the number of unique runs per
research question. Note, the data is based partially on time stamps, and partially on estimation,
since not all experiments were fully automated. The Unique Runs column represents the number
of distinct benchmark executions, regardless of whether a profiler was attached. This data was
collected by processing each ReBench file. For example, to answer RQ2 and create Figure 5, we
ran all 14 benchmarks 20 times each (10 times with and 10 times without slowdown), across 3
slowdown levels and 4 different profilers, which means we needed 3,360 unique runs. Together
with the other research questions, this added up to 5,100 runs in total.

8 Related Work

Related work on the accuracy of JVM profilers was discussed in Section 3. Here, we discuss the
wider related work.

The Coz profiler [Curtsinger and Berger 2015] predicts the optimization potential of specific
code by slowing down specific threads to simulate a virtual speedup of the thread that was not
slowed down. Instead of stopping threads, our approach inserts instructions at the basic-block level
and aims to assess profiler accuracy instead of optimization potential. Though, our approach could
be adapted to realize Coz’s virtual speedup and help developers to estimate optimization potential
and prioritize optimizations, too. This might have the benefit of having a finer granularity than
what is possible with stopping threads, but is likely to come with other tradeoffs, e.g., the time it
takes to divine the virtual speedup, which would need to be optimized.

Xu et al. [2019] found that profilers relying on hardware performance counters can attribute
execution time to incorrect instructions and functions. The root cause of this issue, as they identified
it, is the skid effect, a delay between the request for an interrupt and the actual halting of execution.
This delay, which can be tens of cycles, allows the instruction pointer to advance beyond the
originally intended instruction. They observed that in very hot loops, this effect can cause samples
to skid, leading to execution time being attributed to different instructions, belonging to other
functions. To assess the accuracy of hardware performance counters, they built Ground Truth
Profiler, an instrumentation-based tool designed to measure the exact number of retired instructions
for a given function without relying on hardware performance counters.

Instrumentation-based Profiling with Graal. Basso et al. [2023] implemented an event-level profiler
inside Graal to record compiler-level events that avoid perturbing compiler optimizations. We built
an instrumentation-based method profiler within Graal [Burchell et al. 2024]. Both approaches
leverage the information provided by the Graal compiler at compile time to make better decisions on
when and where to instrument code, while also reducing interference with compiler optimizations.
They place probes as late as possible in the compilation phase to avoid disrupting compiler decisions.

While our approach involves injecting code to introduce slowdowns, we perform this at the LIR
stage, which is even later in the compilation pipeline. This provides a strong guarantee that our
modifications have minimal impact on the compiler’s optimization decisions.
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9 Conclusion & Future Work

This paper introduces a methodology to approximate the ground truth profile to assess the accuracy
of sampling-based profilers for just-in-time compiled systems. We do this by accurately slowing
down the execution of a program at the machine code level. Using the Graal compiler, a just-in-time
compiler for Java, we insert slowdown at in the lower intermediate representation, which prevents
interference with compiler optimizations and minimizes impact on the performance behavior at
the microarchitectural level.

Our experiments demonstrate that the approach allows us to slowdown the Are We Fast Yet
benchmarks to a specific target speed and reach the desired overall run time. We also show at the
basic-block level of the native code that the basic blocks that dominate the run time achieve the
desired slowdown. We further evaluate the approach using the four Java profilers Async-profiler,
JER, JProfiler, and YourKit to see whether the slowed-down execution results in consistent profiles.
Thus, profiles that maintain the same percentage of program time per method, independent of the
applied slowdown.

Finally, we approximate the ground truth profile by slowing down individual basic blocks. The
assumption here is that different levels of slowdown, approaching a close-to-zero slowdown would
give us the ground truth profile. While the practical limitations of the minimal slowdown being a
single added machine instruction prevent us to obtain a true ground truth profile, we show that we
can successfully approximate the ground truth by predicting the changed profile when slowing
down a single basic block. We use this to assess the accuracy of profilers by seeing whether the
slowed-down basic block is not only detected, but the degree of slowdown is determined accurately.
With this approach, we were able to identify discrepancies in profiler accuracy, with profilers like
Async-profiler more consistently detecting and attributing slowdowns correctly, while JProfiler
in the majority of our tests misattributed execution time and having a higher difference between
predicted and measured change in time spent in a slowed-down method.

Our results highlight inaccuracies in modern sampling-based profilers, which is likely caused by
incomplete debugging information leading to attributing samples to incorrect methods. This issue
is particularly prevalent in highly optimized programs, where compiler transformations lead to
missing debugging information.

Future Work. In future work, we want to explore how the approach transfers to different microar-
chitectures to make it portable. Currently, we have only tested it with Intel’s Skylake. Though, we
are confident that the idea applies more generally, but may need refinement, for instance adapting
the instruction used for slowdown, heuristics to prevent pipeline stalling, and possibly other aspects
that may change the performance behavior of a slowed-down program.

We also intend to investigate how to compensate for the inaccuracies for sampling hardware
counters. If we can compensate for instance for instruction skid, we may be able to introduce
slowdown instructions more targeted inside basic blocks. At the moment, we insert instructions
evenly throughout, but when instructions in the same basic block come from multiple different
methods, we would want to slow down instructions from only one of the methods. This could
facilitate assessing the accuracy of JVM profiling not only at the method level, but down to the source
expression or bytecode level. This would be important, because when investigating performance
optimizations, pinpointing which part of a method takes the most time is typically the next step
after identifying a method with optimization potential.

Additionally, with our approach to slowing down programs at the basic-block level, one could
investigate the notion of virtual speedup [Curtsinger and Berger 2015] to predict the benefit of
optimizing a specific bit of code.
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10 Data-Availability Statement

The artifact for this paper includes the raw data of all experiments, measurements, slowdown files,
as well as the source code of benchmarks, our modified version of Graal and the scripts to process
the data and generate all figures, tables, and statistics included in the paper [Burchell and Marr
2025a). However, because the slowdown is microarchitecture-specific we cannot provide an artifact
that is guaranteed to reproduce our results out of the box by rerunning the preamble, divining, and
profiling steps of our approach.

Acknowledgments

We thank YourKit and JProfiler for granting us academic licenses for their products.

References

Andreas Abel and Jan Reineke. 2022. uiCA: accurate throughput prediction of basic blocks on recent intel microarchitectures.
In Proceedings of the 36th ACM International Conference on Supercomputing (Virtual Event) (ICS °22). ACM, Article 33,
14 pages. doi:10.1145/3524059.3532396

Ole Agesen. 1998. GC Points in a Threaded Environment. Technical Report SMLI TR-98-70. Sun Microsystems.

Cristian Assaiante, Daniele Cono D’Elia, Giuseppe Antonio Di Luna, and Leonardo Querzoni. 2023. Where Did My
Variable Go? Poking Holes in Incomplete Debug Information. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS
2023). ACM, 935-947. doi:10.1145/3575693.3575720

Denis Bakhvalov. 2024. Performance Analysis and Tuning on Modern CPUs, Second Edition. Independently published. 237
pages.

Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and Laurence Tratt. 2017. Virtual Machine Warmup
Blows Hot and Cold. Proc. ACM Program. Lang. 1, OOPSLA, Article 52 (Oct. 2017), 27 pages. doi:10.1145/3133876

Matteo Basso, Aleksandar Prokopec, Andrea Rosa, and Walter Binder. 2023. Optimization-Aware Compiler-Level Event
Profiling. ACM Trans. Program. Lang. Syst. 45, 2, Article 10 (jun 2023), 50 pages. doi:10.1145/3591473

Stephen M. Blackburn, Zixian Cai, Rui Chen, Xi Yang, John Zhang, and John Zigman. 2025. Rethinking Java Performance
Analysis. In Proceedings of the 30th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1 (Rotterdam, Netherlands) (ASPLOS ’25). ACM, 940-954. doi:10.1145/3669940.3707217

Humphrey Burchell, Octave Larose, Sophie Kaleba, and Stefan Marr. 2023. Don’t Trust Your Profiler: An Empirical Study
on the Precision and Accuracy of Java Profilers. In Proceedings of the 20th ACM SIGPLAN International Conference on
Managed Programming Languages and Runtimes (MPLR 2023). ACM, 100-113. doi:10.1145/3617651.3622985

Humphrey Burchell, Octave Larose, and Stefan Marr. 2024. Towards Realistic Results for Instrumentation-Based Profilers
for JIT-Compiled Systems. In Proceedings of the 21st ACM SIGPLAN International Conference on Managed Programming
Languages and Runtimes (Vienna, Austria) (MPLR 2024). ACM, 82-89. doi:10.1145/3679007.3685058

Humphrey Burchell and Stefan Marr. 2025a. Divining Profiler Accuracy: An Approach to Approximate Profiler Accuracy
Through Machine Code-Level Slowdown (Artifact). doi:10.5281/zenodo.16911348

Humphrey Burchell and Stefan Marr. 2025b. Evaluating Candidate Instructions for Reliable Program Slowdown at the
Compiler Level: Towards Supporting Fine-grained Slowdown for Advanced Developer Tooling. In Proceedings of the 17th
ACM SIGPLAN International Workshop on Virtual Machines and Intermediate Languages (Singapore) (VMIL’25). ACM, 8.
doi:10.1145/3759548.3763374

Cliff Click and Michael Paleczny. 1995. A simple graph-based intermediate representation. In IR °95: Papers from the
1995 ACM SIGPLAN Workshop on Intermediate Representations (San Francisco, California, United States). ACM, 35-49.
doi:10.1145/202529.202534

Robert P. Colwell. 2021. The Origin of Intel’s Micro-Ops. IEEE Micro 41, 6 (Nov. 2021), 37-41. doi:10.1109/MM.2021.3112026

Charlie Curtsinger and Emery D. Berger. 2015. Coz: finding code that counts with causal profiling. In Proceedings of the 25th
Symposium on Operating Systems Principles (Monterey, California) (SOSP ’15). ACM, 184-197. doi:10.1145/2815400.2815409

Gilles Duboscq, Thomas Wiirthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and Hanspeter M6ssenbock. 2013. An
intermediate representation for speculative optimizations in a dynamic compiler. In Proceedings of the 7th ACM Workshop
on Virtual Machines and Intermediate Languages (VMIL ’13). ACM, 1-10. doi:10.1145/2542142.2542143

Andre Takeshi Endo and Anders Meller. 2025. Event Race Detection for Node.js Using Delay Injections. In 39th European
Conference on Object-Oriented Programming (ECOOP 2025) (LIPIcs, Vol. 333). Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 9:1-9:28. do0i:10.4230/LIPICS.ECOOP.2025.9

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 402. Publication date: October 2025.


https://doi.org/10.1145/3524059.3532396
https://doi.org/10.1145/3575693.3575720
https://doi.org/10.1145/3133876
https://doi.org/10.1145/3591473
https://doi.org/10.1145/3669940.3707217
https://doi.org/10.1145/3617651.3622985
https://doi.org/10.1145/3679007.3685058
https://doi.org/10.5281/zenodo.16911348
https://doi.org/10.1145/3759548.3763374
https://doi.org/10.1145/202529.202534
https://doi.org/10.1109/MM.2021.3112026
https://doi.org/10.1145/2815400.2815409
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.4230/LIPICS.ECOOP.2025.9

Divining Profiler Accuracy: An Approach to Approximate Profiler Accuracy 402:27

Agner Fog. 2022. Instruction tables: Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD
and VIA CPUs. Technical Report. https://www.agner.org/optimize/instruction_tables.pdf

Bjorn Gottschall, Lieven Eeckhout, and Magnus Jahre. 2021. TIP: Time-Proportional Instruction Profiling. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO ’21). ACM, 15-27. doi:10.1145/3466752.3480058

Brendan Gregg. 2013. Systems Performance: Enterprise and the Cloud. Prentice Hall, Upper Saddle River, NJ.

John L. Hennessy and David A. Patterson. 2017. Computer Architecture: A Quantitative Approach (6th ed.). Morgan Kaufmann.
936 pages.

Intel 2016. Intel® 64 and IA-32 Architectures Software Developer’s Manual: Volume 2C, Instruction Set Reference, V-Z.
Intel. https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-
developer-vol-2c-manual.pdf

Stephen Kell and J. Ryan Stinnett. 2024. Source-Level Debugging of Compiler-Optimised Code: Ill-Posed, but Not Impossible.
In Proceedings of the 2024 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward! °24). ACM, 38-53. doi:10.1145/3689492.3690047

Elena Machkasova, Kevin Arhelger, and Fernando Trinciante. 2009. The observer effect of profiling on dynamic Java
optimizations. In Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems
Languages and Applications (Orlando, Florida, USA) (OOPSLA °09). ACM, 757-758. do0i:10.1145/1639950.1640000

Stefan Marr, Benoit Daloze, and Hanspeter Mdssenbdck. 2016. Cross-Language Compiler Benchmarking—Are We Fast
Yet?. In Proceedings of the 12th Symposium on Dynamic Languages (Amsterdam, Netherlands) (DLS’16). ACM, 120-131.
doi:10.1145/2989225.2989232

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2010. Evaluating the Accuracy of Java Profilers.
In Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’10).
ACM, 187-197. do0i:10.1145/1806596.1806618

Aleksandar Prokopec, Andrea Rosa, David Leopoldseder, Gilles Duboscq, Petr Tima, Martin Studener, Lubomir Bulej, Yudi
Zheng, Alex Villazon, Doug Simon, Thomas Wiirthinger, and Walter Binder. 2019. Renaissance: benchmarking suite for
parallel applications on the JVM. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Phoenix, AZ, USA) (PLDI 2019). ACM, 31-47. doi:10.1145/3314221.3314637

John Paul Shen and Mikko H. Lipasti. 2005. Modern Processor Design: Fundamentals of Superscalar Processors. Waveland
Press. 642 pages.

R. M. Tomasulo. 1967. An efficient algorithm for exploiting multiple arithmetic units. IBM J. Res. Dev. 11, 1 (Jan. 1967),
25-33. d0i:10.1147/rd.111.0025

Hao Xu, Qingsen Wang, Shuang Song, Lizy John, and Xu Liu. 2019. Can we trust profiling results?: understanding and
fixing the inaccuracy in modern profilers. In Proceedings of the ACM International Conference on Supercomputing (ICS ’19).
ACM, 284-295. doi:10.1145/3330345.3330371

Yudi Zheng, Lubomir Bulej, and Walter Binder. 2015. Accurate Profiling in the Presence of Dynamic Compilation. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’15). ACM, 433-450. doi:10.1145/2814270.2814281

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 402. Publication date: October 2025.


https://www.agner.org/optimize/instruction_tables.pdf
https://doi.org/10.1145/3466752.3480058
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2c-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2c-manual.pdf
https://doi.org/10.1145/3689492.3690047
https://doi.org/10.1145/1639950.1640000
https://doi.org/10.1145/2989225.2989232
https://doi.org/10.1145/1806596.1806618
https://doi.org/10.1145/3314221.3314637
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1145/3330345.3330371
https://doi.org/10.1145/2814270.2814281

402:28 Humphrey Burchell and Stefan Marr

Table 4. Overhead percentages for benchmarks at different slowdown speeds, this are the data points that
make up Figure 4a

Benchmark Slowdown-50 Overhead Slowdown-100 Overhead Slowdown-150 Overhead

Bounce 56.1% 99.1% 142.5%
List 55.6% 102.2% 146.6%
Mandelbrot 53.1% 101.6% 154.7%
NBOdy 50.0% 100.0% 149.1%
Permute 46.9% 100.0% 146.9%
Queens 50.0% 94.3% 142.9%
Sieve 48.6% 98.9% 146.4%
Storage 54.7% 102.7% 161.5%
Towers 58.0% 106.2% 160.2%
CD 46.4% 96.4% 144.5%
DeltaBlue 50.5% 90.2% 139.5%
Havlak 47.0% 115.0% 148.0%
Json 45.6% 94.1% 147.1%
Richards 48.8% 109.8% 143.9%
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Fig. 7. Histogram shows the distribution of overhead differences from the target slowdown of 50% across all
benchmarks. The x-axis represents the difference in percentage points. The y-axis shows the percentage of
benchmark run time. The results show that the majority of run time is spent in blocks with overheads close
to the target slowdown.
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Fig. 8. Histogram shows the distribution of overhead differences from the target slowdown of 150% across
all benchmarks. The x-axis represents the difference in percentage points. The y-axis shows the percentage of
benchmark run time. The results show that the majority of run time is spent in blocks with overheads close
to the target slowdown.
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Fig. 9. Displays the overhead measured across 10 runs for each benchmark when using VTune in hardware
sampling mode with stack collection. The baseline represents the median runtime with no profiling tools

attached.
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Table 5. Summary of target slowdown performance for each profiler. Total Target Methods denotes the
number of slowdown blocks tested per benchmark. Detected in Baseline indicates whether the target
method was identified in the baseline run. Detected in Slowdown indicates whether the target method was
identified in the slowdown run. Baseline Usage (%) and Slowdown Usage (%) represent the percentage of
run time attributed to the target method in the baseline and slowdown runs, respectively. Actual Change
(%) is the change in usage from baseline to slowdown, Predicted Change (%) is the expected change if all
additional time were attributed to the target method, and Error (%) is the difference between the actual and
predicted changes. For each target block for every benchmark and profiler the values are a median of 10 runs.

Target ~ Target Detected in Detected in ~ Baseline ~ Slowdown Actual Predicted
Profiler Benchmark Block Method Baseline Slowdown Usage (%) Usage (%) Change (%) Change (%) Error (%)
1 Vector.hasSome True True 33.78 37.17 3.38 3.06 0.32
Havlak 2 HavlakLoopFinder.doDFS True True 2.13 6.73 4.6 4.52 0.08
3 HavlakLoopFinder.lambda$stepD$6  False False - - - - -
1 String.equals True True 34.83 43.34 8.51 8.26 0.25
Json 2 Vector.append True True 2.17 15.07 12.89 12.41 0.49
Async 3 String.equals True True 34.83 44.07 9.24 8.26 0.97
1 List.isShorterThan True True 42.48 48.53 6.05 3.05 3
List 2 List.tail True True 12 9.61 -2.4 4.67 -7.07
3 List$Element.getNext True True 44.5 47.28 278 2.94 -0.16
1 TaskState.isTaskHoldingOrWaiting ~ True True 7.81 19.55 11.73 9.92 1.81
Richards 2 Scheduler.schedule True True 19.73 28.96 9.23 8.64 0.6
3 TaskState.isWaitingWithPacket True True 239 13.36 10.96 10.5 0.46
1 Vector.hasSome True True 40.8 44.73 3.94 2.76 117
Havlak 2 HavlakLoopFinder.doDFS True True 2.29 7.89 5.6 4.56 1.05
3 HavlakLoopFinder.lambda$stepD$6  False False - - - - -
1 String.equals True True 42.3 50.6 8.3 73 0.99
Json 2 Vector.append True True 2.85 17.5 14.64 12.29 2.35
JFR 3 String.equals True True 42.3 51.19 8.88 73 1.58
1 List.isShorterThan True True 43.52 50.5 6.98 2.96 4.01
List 2 List.tail True True 7.46 5.77 -1.69 4.86 -6.55
3 List$Element.getNext True True 48.16 50.23 2.07 2.72 -0.65
1 TaskState.isTaskHoldingOrWaiting ~ True True 8.8 21.84 13.04 9.95 3.09
Richards 2 Scheduler.schedule True True 22.42 32.08 9.66 8.46 1.2
3 TaskState.isWaitingWithPacket True True 2.68 14.65 11.97 10.62 1.35
1 Vector.hasSome False False — — — - —
Havlak 2 HavlakLoopFinder.doDFS True True 2.1 12.7 10.6 4.71 5.89
3 HavlakLoopFinder.lambda$stepD$6  False False - - - - -
1 String.equals False False - - — — -
Json 2 Vector.append False False — — - - -
JProfiler 3 String.equals False False — — — — —
1 List.isShorterThan True True 43.8 90.3 46.5 2.99 43.51
List 2 List.tail True True 9.7 8.9 -0.8 4.8 -5.6
3 List$Element.getNext False False - - — - —
1 TaskState.isTaskHoldingOrWaiting ~ True True 8 0 -8 10.16 -18.16
Richards 2 Scheduler.schedule True True 25.15 17 -8.15 8.26 -16.41
3 TaskState.isWaitingWithPacket False False — — — - —
1 Vector.hasSome True True 36.51 36.32 -0.19 2.99 -3.18
Havlak 2 HavlakLoopFinder.doDFS True True 2.23 7.36 5.13 4.6 0.53
3 HavlakLoopFinder.lambda$stepD$6  False False - - - - -
1 String.equals True True 37.45 45.84 8.39 7.93 0.46
Json 2 Vector.append True True 233 15.89 13.56 12.38 1.18
YourKit 3 String.equals True True 37.45 46.19 8.74 7.93 0.81
1 List.isShorterThan True True 44.64 50.05 5.41 2.94 2.47
List 2 List.tail True True 9.47 7.9 -1.57 4.81 -6.38
3 List$Element.getNext True True 44.84 46.84 2.01 2.93 -0.93
1 TaskState.isTaskHoldingOrWaiting ~ True True 8.99 20.04 11.05 9.83 1.22
Richards 2 Scheduler.schedule True True 18.87 28.38 9.52 8.76 0.76
3 TaskState.isWaitingWithPacket True True 2.59 14.09 115 10.52 0.98
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Table 6. Divine time and slowdown-file metrics for each benchmark at 50%, 100% and 150% imposed slowdown.
The Total refers to the number of slowdown instructions inserted into the final machine code of the benchmark
while the Median is the median number of instructions inserted into a basic block at the final machine-code
level. Note, the data for this table is extracted based on the slowdown files, while Table 2 is directly reported
by Graal. Furthermore, they are from different runs, which means there can be small differences in the data.

(a) 50% slowdown

Benchmark Comp Units Native Basic Blocks | Runs Elapsed (hh:mm) Total Median

Bounce 1 21 36 01:03 120 3
List 2 59 32 01:56 162 2
Mandelbrot 1 11 53 01:24 150 3
NBody 1 1 61 01:46 553 553
Permute 1 16 19 00:32 45 2
Queens 1 107 14 00:17 283 2
Sieve 1 17 68 03:08 916 2
Storage 2 80 56 02:32 505 4
Towers 1 52 13 00:34 162 3
CD 9 343 244 07:18 1663 3
DeltaBlue 14 230 319 15:28 1744 3
Havlak 9 401 236 11:13 5986 3
Json 10 470 250 06:06 2550 3
Richards 3 84 99 02:32 389 3

(b) 100% slowdown

Benchmark Comp Units Native Basic Blocks ‘ Runs Elapsed(hh:mm) Total Median

Bounce 1 21 51 01:55 214 5
List 2 59 49 03:18 325 3
Mandelbrot 1 11 94 02:51 232 7
NBody 1 1 50 01:28 1072 1072
Permute 1 16 24 00:44 93 6
Queens 1 107 22 00:30 547 4
Sieve 1 17 82 04:47 2014 6
Storage 2 80 74 03:39 806 7
Towers 1 52 20 00:52 304 6
CD 9 343 367 11:12 4216 6
DeltaBlue 14 230 491 25:06 3086 7
Havlak 9 401 400 21:25 23200 7
Json 10 470 329 08:36 5197 7
Richards 3 84 141 03:45 946 6

(c) 150% slowdown

Benchmark Comp Units Native Basic Blocks ‘ Runs Elapsed(hh:mm) Total Median

Bounce 1 21 78 03:29 299 8
List 2 59 61 04:38 450 5
Mandelbrot 1 11 80 02:46 307 9
NBody 1 1 109 04:42 1558 1558
Permute 1 16 42 01:29 142 9
Queens 1 107 22 00:35 737 6
Sieve 1 17 98 06:53 5036 10
Storage 2 80 80 03:02 1777 14
Towers 1 52 26 01:14 447 9
CD 9 343 386 12:17 6587 11
DeltaBlue 14 230 564 29:18 4673 11
Havlak 9 401 511 29:14 43785 10
Json 10 470 383 10:08 9402 13
Richards 3 84 194 05:29 9438 8
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Table 7. Benchmarking time and number of unique runs per research question

Research Question Benchmarking Time (h) Unique Runs

RQ 1 36 1260
RQ 2 93 3360
RQ 3 10 480
Total 139 5,100
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Fig. 10. Bar chart showing the absolute change in percentage points for all methods for each benchmark,
when transitioning from safepoints being present to removed. The purpose is to demonstrate how profilers
adjust their results when no safepoints are available in the program. JFR includes two versions, illustrating
the difference in results when the -XX:+DebugNonSafepoints flag is enabled.
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