Evaluating Candidate Instructions for Reliable
Program Slowdown at the Compiler Level

Towards Supporting Fine-Grained Slowdown for Advanced Developer Tooling

Humphrey Burchell
University of Kent
United Kingdom
h.burchell@kent.ac.uk

Abstract

Slowing down programs has surprisingly many use cases: it
helps finding race conditions, enables speedup estimation,
and allows us to assess a profiler’s accuracy. Yet, slowing
down a program is complicated because today’s CPUs and
runtime systems can optimize execution on the fly, making
it challenging to preserve a program’s performance behavior
to avoid introducing bias.

We evaluate six x86 instruction candidates for controlled
and fine-grained slowdown including NOP, MOV, and PAUSE.
We tested each candidate’s ability to achieve an overhead
of 100%, to maintain the profiler-observable performance
behavior, and whether slowdown placement within basic
blocks influences results. On an Intel Core i5-10600, our ex-
periments suggest that only NOP and MOV instructions are suit-
able. We believe these experiments can guide future research
on advanced developer tooling that utilizes fine-granular
slowdown at the machine-code level.

CCS Concepts: + General and reference — Measurement; «
Software and its engineering — Software performance;
FJust-in-time compilers.

Keywords: slowdown, x86 instructions, evaluation

ACM Reference Format:

Humphrey Burchell and Stefan Marr. 2025. Evaluating Candidate
Instructions for Reliable Program Slowdown at the Compiler Level:
Towards Supporting Fine-Grained Slowdown for Advanced Devel-
oper Tooling. In Proceedings of the 17th ACM SIGPLAN International
Workshop on Virtual Machines and Intermediate Languages (VMIL
’25), October 12—18, 2025, Singapore, Singapore. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3759548.3763374

1 Introduction

Against the trend of focusing on optimizations, a number
of developer tools work by slowing down programs. One

VMIL °25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 17th ACM SIGPLAN International Workshop on Virtual
Machines and Intermediate Languages (VMIL °25), October 12-18, 2025, Sin-
gapore, Singapore, https://doi.org/10.1145/3759548.3763374.

Stefan Marr
University of Kent
United Kingdom
s.marr@kent.ac.uk

is race detection [8], where delays are induced to explore
different schedules to uncover race conditions. Another use
case is virtual speedup [6], which is used to assess the per-
formance potential that optimizing specific program parts
yields. Finally, slowing down program parts can be used to
evaluate the sensitivity and accuracy of profilers [4].

To enable these applications, any slowdown must be tar-
getable to specific code sections, without slowing down oth-
ers, e.g., as a result of out-of-order execution. Furthermore,
we need to be able to adjust the amount of slowdown for
a section precisely and with fine granularity. To this end,
we explore six x86 instruction candidates to slow down pro-
grams predictably by inserting them late in the compilation.

We inject the slowdown instructions into machine-code
basic blocks and use hardware counters to determine how
many are needed. We implemented our experiments in the
Graal compiler, a just-in-time (JIT) compiler and evaluate the
candidates on a Java benchmark with 53 basic blocks. The
experiments were run on an Intel Core 15-10600 CPU with
the Comet Lake-S microarchitecture. As an experiment, we
will try to precisely double the run time of a benchmark at the
level of basic blocks. This 100% overhead is high enough to
be measurable, allowing for a range of slowdown candidates,
without being impractically slow or immeasurably small.

We found that NOP and MOV give us most control and the
finest granularity. When aiming for a 100% slowdown, they
allow us to achieve a very close 109% and 106% program
slowdown, and thus, are the best choice for accurately slow-
ing down programs. We also tested a PUSH+POP sequences,
which caused 202% overhead, SFENCE (405% overhead), a mix
of normal and vector instructions (named Long PUSH+POP,
410% overhead), and PAUSE (11,505% overhead). Though, they
are not fine-grained enough for our use cases.

The contributions of this paper are as follows:

e An evaluation of the effectiveness of six slowdown
candidates, with MOV and NOP being most suitable.

e An evaluation of the placement of slowdown, demon-
strating that interleaving existing and slowdown in-
structions better maintains the performance behavior.

https://orcid.org/0000-0003-4728-5819
https://orcid.org/0000-0001-9059-5180
https://doi.org/10.1145/3759548.3763374
https://doi.org/10.1145/3759548.3763374

VMIL °25, October 12-18, 2025, Singapore, Singapore

2 Background

This section gives a brief overview of relevant x86 instruc-
tions, microarchitectural optimizations, and VTune.

Slowdown Instructions. Adding deliberate delays into a
program requires instructions that consume cycles without
changing its logical state. The x86-64 instruction set comes
with no-operation (NOP) instructions of different length, a
PAUSE instruction (a hint for spin-wait loops), memory fences,
and it allows us to combine instructions into sequences that
execute without observable effect. From these, we select five
candidates in Section 5 with possibly different performance
behaviors, to find the most suitable one.

Pipelining and Out-of-Order Execution. Modern pro-
cessors increase instruction throughput and performance
with pipelining and out-of-order execution (OOO) [9]. The
dynamic reordered and parallel execution enabled by these
approaches complicates performance analysis, as the ob-
served execution order may not match the program’s origi-
nal instruction sequence, making it challenging to attribute
instruction-level execution time accurately.

Hardware Event Sampling with VTune. Intel’s VTune
profiler is a tool that samples performance counters of hard-
ware events that track metrics such as CPU cycles and ex-
ecuted instructions. Based on this data, it can determine
how much time is spent in a given basic block. However,
because counters are sampled, it may miss some events. Fur-
thermore, because sampling is subject to skid, i.e., a delay
between triggering and recording the counter, results can be
misattributed [15] limiting the accuracy of metrics.

3 Use Cases, Requirements, and Candidates
for Machine-code-level Slowdown

This section discusses use cases that benefit from slowing
down programs in more detail, derive requirements for our
approach, and select candidate instructions.

3.1 Use Cases

Existing approaches that slowdown programs use coarse-
grained techniques, e.g., inserting delays based on the run-
time or kernel mechanisms, blocking thread execution, or
inserting code at the bytecode level. We propose to insert
slowdowns at the compiler level, after optimizations [2] to
have full control without biasing performance behavior.

Exposing Race Conditions. A number of approaches
propose to detect race conditions by changing the timing of
interactions. Musuvathi et al. [12] adapted thread scheduling
to find concurrency-based heisenbugs in shared memory
concurrency. Stoica et al. [14] insert sleep operations to de-
tect memory-ordering bugs. Endo and Meller [8] propose an
approach to explore different event schedules and thereby ex-
pose race conditions by instrumenting Node.js and injecting

Humphrey Burchell and Stefan Marr

random delays in the event execution. All of these approachs
are coarse-grained and change the high-level scheduling.
When inserting slowdowns at the basic-block level, one
could use a similar approach to identify race conditions at
the instruction level. By inserting slowdown instructions
into critical sections, we can widen the vulnerability win-
dow enough for other threads to overtake and expose race
conditions, while leaving the rest of the code to run at full
speed. Because the delay can be incrementally tuned, pre-
serves register state, and does not alter memory layout or
optimization decisions, it could give a very fine granularity.

Virtually Speeding Up Code. Virtual speedups can be
used to estimate how much benefit an optimization yields [6].
Curtsinger and Berger [6] slow down other code by pausing
the other threads. Thus, the target code is virtually speed up,
by not being slowed down. Though, because they do this on
the level of threads, it has a fairly coarse granularity.

Inserting slowdown at a basic-block level could give the
same benefit and allow developers to judge the impact of
optimizations that may not be visible at the thread level.

Accuracy Testing of Profilers. Mytkowicz et al. [13]
and Burchell et al. [3] showed that Java profilers are un-
reliable. There are some inherent issues such as the JVMs
non-determinism, as well as the profiler’s safepoint bias.
Recently, we showed how slowing down code can be used
to estimate a ground truth to assess profiler accuracy [4].
By inserting slowdown after all compiler optimizations, we
can determine the degree by which profilers are inaccurate.
Though, we simply used MOV and investigate here, which the
most suitable candidate for this approach is.

3.2 Requirements

For the above uses cases, we will need an approach that al-
lows us to inject slowdown accurately, without side-effects,
i.e., without changing the program semantics, and in a way
that allows us to distribute slowdown freely inside basic
blocks. This is needed to slowdown a program in a controlled
and predictable way, while keeping basic block performance
behavior intact. With performance behavior we mean how
time is distributed across program parts for a single execu-
tion. It includes where time is spent, i.e., in which methods
or basic blocks, and how much time is consumed.

Accurate Amount of Slowdown. To accurately predict
speedups and assess profiler measurements, a specific basic
block needs to be slowed down proportionally to its original
run time. For instance, the block’s run time may need to be
doubled, as in the experiments reported here. Then, we can
assess whether profilers report this slowdown accurately.
Similarly, if we want to estimate the impact of speeding up
a method by 10%, we would need to make all other methods
10% slower for a virtual speedup. This means, we need to
be able to insert precise amounts of slowdown into a basic

Evaluating Candidate Instructions for Reliable Program Slowdown at the Compiler Level

block. It also means the slowdown must apply to only the
target basic block, without affecting other blocks. If a slow-
down intended for one block, e.g. in methodA, inadvertently
affects another part of the program, e.g., a block belonging
to methodB, the performance behavior becomes unreliable.
Thus, if for any reason the slowdown is only approximate, it
would limit the precision available to our use cases.

Side-Effect-Free Slowdown. For all use cases, when in-
troducing slowdown into a program, we must maintain its
logical correctness. Therefore, the inserted slowdown must
avoid affecting e.g., memory, registers, and CPU flags, which
subsequently could alter the program’s logical behavior. A
program’s execution must remain exactly the same, regard-
less of the applied slowdown, to maintain the validity of
the measurement and ensure that any observed changes are
solely the result of the intended slowdown.

Distributed Slowdown. For virtual speedup and deter-
mining profiler accuracy, slowdown needs to be evenly dis-
tributed across a basic block. If it is concentrated in few spots,
we may reach the target slowdown accuracy, but it may still
bias observable performance behavior. With inlining, a basic
block can have instructions from different source methods.
Thus, for tools that work at source level, slowdown may need
to be attributed to specific instructions within a basic block.
Though, with the limited precision of hardware counter sam-
pling, we will only aim for evenly distributing slowdown in
a basic block to limit biasing the performance behavior from
the source-level perspective too much.

3.3 Candidate Instructions

As discussed in Section 3.2, a slowdown instruction or in-
struction sequence cannot affect the program’s underlying
logic, must allow for accurate and deterministic slowdown,
and we must be able to interleave it with other instructions.
Based on these requirements, we selected the six candidates
shown in Table 2 in the appendix. They are likely to consume
CPU cycles without altering the surrounding program logic
or control flow, and thus, satisfy our requirements.

We use a 2-byte instead of a 1-byte NOP because the latter
seemed be removed by Graal. Since some Intel CPUs optimize
NOPs early in their pipelines [10, Section 2.1.2.1], we also
included the MOV, and the PUSH+POP instruction sequence
for variety. SFENCE and PAUSE were included since they are
likely to consume CPU cycles, without further side effects.
Finally, we included the Long PUSH+POP sequence to see
whether using a different functional unit, e.g., the vector
unit, makes a difference.

4 Inserting Slowdown at the Compiler Level

We implemented our slowdown mechanism as a compilation
phase in the Graal just-in-time (JIT) compiler, which can
compile Java programs at run time [7]. Java bytecode is first

VMIL ’25, October 12-18, 2025, Singapore, Singapore

turned into GraallR [7], which is used for high-level optimiza-
tions such as inlining and loop transformations. Afterwards,
the GraallR is turned into the lower intermediate represen-
tation (LIR), in which the code is organized as basic blocks,
similar to machine code basic blocks. The LIR is used for
register allocation and a few other low-level optimizations.

4.1 The LIR Slowdown Phase

We added our slowdown mechanism as a LIR compilation
phase. This phase inserts a specified number of LIR instruc-
tions, which then emit the desired x86 instructions. The
phase takes a slowdown file as input, which lists for each
compilation units and each LIR basic block the amount of
slowdown to be injected. This allows us to add a precise
amount of slowdown per basic block.

We insert slowdown instructions interleaved with the ex-
isting LIR instructions within each block, to distribute the
slowdown and avoid biasing the performance behavior. Fur-
thermore, we do not assign debugging information to the
slowdown instructions. This avoids biasing tools towards a
specific instruction, when they use the debugging informa-
tion. As mentioned before, this is needed because basic blocks
can contain instructions from multiple methods. Section 6
will evaluate the effectiveness of interleaving instructions.

4.2 Using Hardware Counters to Determine
Slowdown Amount

Since some use cases require us to add slowdown propor-
tional to the run time of a basic block, we need the accurate
run time of basic blocks considering out-of-order execution,
pipelining, caching, and memory access latency. To obtain it,
we use the hardware event counters using VTune, but other
tools, for instance perf, would be suitable, as long as they
measure the run time of a basic block including all the effects
mentioned above. As simplification, we consider each block
without context, i.e., previous control flow.

To determine the needed slowdown for a block, we im-
plemented a feedback-based system that measures the run
time of a block, adds more slowdown instructions, and exe-
cutes the program again, measures the new run time of the
block, and repeats this process until the target slowdown is
achieved. This iterative approach achieves accurate results
and maintains a block’s initial performance behavior.!

However, this iterative approach takes a long time. Deter-
mining the required slowdown for the Towers benchmark
takes approximately two hours, even though the benchmark
itself only has a 100 second execution time.

Furthermore, because of the sampling and granularity
of hardware counters, the timing information for specific
instructions is not generally reliable. Therefore, we apply

We call this system the GroundTruth Scheduler, and use it to assess profiler
accuracy [4]. The paper describes it in more detail.

VMIL °25, October 12-18, 2025, Singapore, Singapore

Table 1. Number of instructions needed to at least double
each basic block’s run time in the Towers benchmark.

Candidate Sequence Number of Times Inserted

NOP 303
MOV 304
PUSH+POP 72
SFENCE 55
Long PUSH+POP 63
PAUSE 55

slowdown to blocks rather than instructions. While this in-
troduces inaccuracies, for instance when a block contains
instructions from multiple methods, and instructions with
different costs, Section 5 shows that our approach is suffi-
cient to accurately slow down both individual blocks and
the entire program to the desired target overhead.

5 Evaluating Candidates

This section evaluates our six candidates by determining how
many of them are needed, which overhead they achieve, how
the overhead is distributed over basic blocks, and how this
changes the performance behavior visible to a Java profiler.

5.1 Methodology

For the evaluation, we use the Towers of Hanoi benchmark
from the Are We Fast Yet suite [11]. The Java version JIT-
compiles to 53 basic blocks within a single compilation unit,
and has a suitable mix of larger and smaller basic blocks.
Since it is fully deterministic, it simplifies experiments.

We only use a single benchmark, because to determine
how much slowdown to add to all 14 benchmarks takes
3.75 days only for the MOV instruction. While using all 14
benchmarks for all candidates would have been desirable, the
MOV instruction gives comparable results for all benchmarks
for Are We Fast Yet [4]. We run Tower for 500 iterations
and it is fully JIT-compiled after only a few. We rerun the
experiment 10 times to determine the achieved overhead.

5.2 Required Number of Slowdown Instructions

For each candidate, we determine how often it needs to be
inserted into a basic block to double the block’s run time, i.e.,
reach the 100% target slowdown. Table 1 shows the results.
In total, over all 53 basic blocks, we needed to insert 303 NOP
or 304 MOV instructions to achieve the slowdown. In contrast,
we only needed 55 PAUSE instructions. This already hints at
NOP and MOV having the finest granularity, while the other
candidates are much coarser, and thus, give less flexibility.

5.3 Run-time Overhead

Figure 1 shows a boxplot of the run-time overhead observed
when running the Towers benchmark for each candidate.

Humphrey Burchell and Stefan Marr

Nop {17 %
MoV {1f8 %
PUSH+POP{ 292%
SFENCE A0p %
Long PUSH+POP 1 41p %
PAUSE - 11505 %
100 1000 10000

Overhead (%)

Figure 1. Boxplot with the overall program’s run-time over-
head achieved with each candidate for a target overhead of
100%. The x-axis uses log-scale. As baseline, we use a bench-
mark run without adding any slowdown.

fury
o

25

‘ e u

0+ . - - - . — -
=-500-250 O 250 =500 =-500-250 0 250 =500
Difference from target (%-pt)Difference from target (%-pt)

= NOP MOV
X 301

o 30

© 2 4

< 20 ‘ 201 ‘

(]

_g 10 104

g 0 0

P\é PUSH+POP SFENCE
< 101

@ 15| ‘
©

g |

%10 5]

£ s

S 04 - "|-'|," " 04 ",
% Long PUSH+POP PAUSE
w -

E 201 75

n 50<

(]

£

<

3

o

Figure 2. The histogram shows the difference in percentage
points from the 100% target slowdown for all blocks on the
x-axis. The % of benchmark run time is on the y-axis.

Only the NOP and MOV instructions achieve a run-time over-
head close to the desired target of 100%. PUSH+POP causes
an overhead of 202%. SFENCE and long PUSH+POP overshoot
the target even further with an overhead of about 400%. The
highers overhead is caused by PAUSE with 11,504%.

These results show that inserting even a single instance
of some instructions can slow down the program more than
desired. In our experience, it is likely that a program has a
few large basic blocks and many small ones. The candidates
that cause high degree of slowdown may be suitable for
slowing down particularity large basic blocks, though, it

Evaluating Candidate Instructions for Reliable Program Slowdown at the Compiler Level

would concentrate the slowdown in one part of the block,
instead of distributing it throughout.

5.4 Distribution of Slowdown Among Blocks

To determine whether the slowdown is accurately applied to
each basic block, we plot their VTune-reported run time in
Figure 2 as a histogram. This shows how close each block’s
slowdown comes to the target of 100%. For each percentage-
point difference, the plot shows how much percent of run
time the blocks contribute to the overall run time. Ideally,
all blocks would fall into the 0-bucket in the middle, which
would mean 100% of the run time is covered by basic blocks
that reached the target slowdown. Though, since a block
may take virtually no time to execute, adding even a single
instruction may slow it down by more than the 100% target.

For the NOP and MOV instructions, majority of the run time
is clustered around the 0-bucket. The distribution is also
close to symmetric, which means that while some blocks are
below the target, others are above the target, which nearly
balances out the difference. The PUSH+POP sequences sees a
larger run-time percentage being spent in blocks that take
up to 250% points more time than the target.

For the SFENCE, the Long PUSH+POP, and the PAUSE in-
structions, this pattern is further exacerbated. For PAUSE,
the blocks that cover most of Tower’s run time are not even
on the plot, and appear around the 5000%-point-difference
mark. This means, that these candidates are not suitable to
accurately slow down a majority of the basic blocks that one
can expect in a program.

5.5 Performance Behavior with Slowdown

To evaluate the effect of slowdown on the performance be-
havior of a program, i.e., how time is distributed across pro-
gram parts, we compare the profile of normal with the slowed
down runs. Specifically, we use async-profiler, a sampling
profiler for Java that is designed to avoid safepoint bias.?

If the relative percentage of total run time spent in each
method remains the same, the slowdown is well distributed.
Thus, basic blocks are slowed down accurately and when
they have instructions from multiple methods, the run time
is attributed in the same proportions as without slowdown.
Thus, it indicates that the program retains a similar ratio of
time spent in each program part, showing that our slowdown
technique does not distort where time is spent by a program.

Figure 3 shows normal and slowed down runs on a scatter
plot where the top six methods in Towers are shown. The
x-axis shows the median run-time percentage of 10 normal
runs and the y-axis shows the median of 10 slowed down
runs. Ideally, methods are on the x=y line, which means their
percentage of run time remains unchanged. Based on the plot,
NOP and MOV give the best results, and the methods’ run-time
percentages are close to the x=y line, staying roughly the

Zhttps://github.com/async-profiler/async-profiler

VMIL ’25, October 12-18, 2025, Singapore, Singapore

NOP MOV
X
c 40‘ T -
3 y e
2201 o 1 s
o " B
(%2} 0 g I I v I I
PUSH+POP SFENCE
X
c 40‘ ® /,/’/ 1
H 7
T 201 & e 1 A8 .
2 4 B 4
2 ‘,»EE/ v -
(%2} 0+ ! ! g ! !
Long PUSH+POP PAUSE
°
c 401 T .
: . »
T 201 1 b
2 A e
2 o »EE/
w0 0 Rl | % <& | ey | |
0 20 40 0 20 40
No-slowdown % No-slowdown %
Towers.moveDisks a Towers.pushDisk
= Towers.moveTopDisk v TowersDisk.getSize
¢ Towers.popDiskFrom < TowersDisk.setNext

Figure 3. A scatter plot per slowdown instruction with the
median run-time percentage for the top six Java methods.
The X = Y diagonal indicates that a method’s run-time
percentage remains the same with and without slowdown.

same despite being slowed down. In contrast, Long PUSH+POP
and the other candidates show major difference in the profile.
For instance, for PUSH+POP, the moveDi sk method goes from
about 20% to around 40% of the program’s run time.

To quantify the difference more accurately, we calculated
the mean squared error (MSE). NOP and MOV have an MSE of
1.2 and 1.5 respectively, which we consider negligible. The
next best candidate is SFENCE with an MSE of 35.6. The long
PUSH+POP sequence has the worst result with an MSE of 893.

5.6 Best Candidate for Accurate, Side-Effect-Free,
and Distributed Slowdown

We evaluated NOP, MOV, PUSH+POP, SFENCE, long PUSH+POP,
and PAUSE as candidates for slowing down programs. NOP
and MOV required the most instructions to be added to the
Tower benchmark to double its run time, thus being most
fine granular. For the overall as well as per-block run time,
they were closest to the 100% target slowdown. Finally, with
them the async-profiler saw the smallest divergence from
the original performance behavior. All other candidates are
to coarse-grained to enable accurate slowdown of small basic
blocks, and because of their high overhead, they can not be
distributed as evenly throughout a basic block.

https://github.com/async-profiler/async-profiler

VMIL °25, October 12-18, 2025, Singapore, Singapore

NOP MOV
<
= 401 5 1 5

& | e
_g 20 B % %"?5’
n 0 < . . & i . .

PUSH+POP SFENCE
®
> 40 B 1
&
% 201) 2 ¢ 1 @ ; S
o 0 B | | B | |
Long PUSH+POP PAUSE
2 40| 1]
g i
520 1 e
o i & ® el , ,
0 20 40 0 20 40

No-slowdown % No-slowdown %
o End of Block o Start of Block x Mix

Figure 4. A scatter plot showing the impact of placing slow-
down at the start, mixed throughout, or at the end of a basic
block. We show the median percentage of run time for the
top six Java methods of Towers. For a method on the X =Y
diagonal, the run-time percentage remained unchanged.

However, NOP and MOV may be optimized by CPUs [10,
Section 2.1.2.1], making them ineffective on other micro-
architectures, requiring a reevaluation of the candidates.

For MOV, we had to implement register rotation to prevent
pipeline stalls. When many MOV instructions operate on the
same register, the used micro-architecture would at a certain
number of MOVs cause much larger slowdowns than expected.
By rotating registers for the inserted MOVs, we avoided this ef-
fect and achieved a more uniform slowdown. However, since
the available set of registers and the pipelining approaches
are CPU-specific, using MOV instructions may require addi-
tional tuning for other micro-architectures.

6 Importance of Distributing Slowdown

As discussed in Section 3.2, the instructions within a block
can come from multiple source methods. Therefore, adding
instructions only at the start or at the end of the block, we
could bias the performance behavior.

To test what effect the placement of slowdown has, we
ran experiments that placed the slowdown at the start of the
block, mixed throughout the block (our default approach),
and with all the slowdown at the end. Similar to Section 5.5,
we then used async-profiler to record profiles.

Figure 4 shows that different placements cause async-
profiler to see noticeable differences in run time percentage

Humphrey Burchell and Stefan Marr

for methods. Specifically, for NOP and MOV we see that place-
ment affects how accurately the performance behavior is
maintained. For example, for NOP, placing the slowdown at
the end of a block cause a larger change than when the
slowdown is mixed in. To quantify the difference, we use
the mean squared error (MSE). For NOP with the slowdown
mixed throughout, the mean squared error remains 1.2, as
in Section 5.5. However, when the slowdown is at the block
start, it goes up to 5.7, but when at the end, the MSE is only
1.4. For MOV, the MSE is 1.5 when mixing in the slowdown,
and it goes to 4.3 for slow down at the start and 6.4 for slow
down at the end. This not only confirms that placement can
be important for specific use cases, but also suggests that
indeed finer-grained instructions should be used that can be
placed more freely and uniformly throughout basic blocks.

7 Related Work

While various projects utilized slowdown [4, 6, 8, 12-14], we
are not aware of any study on the most suitable slowdown
instruction. However, there is work around simulators that
seems relevant. Abel and Reineke [1] present a basic-block
cycle-cost simulator capable of predicting, in a simulated
environment, the steady-state cycles per iteration of a given
basic block. If such a tool were adapted for our use case, it
could be used to slow down blocks on a more fine-grained ba-
sis, for instance by exploiting instruction dependencies and
reduce the time it takes to determine how many slowdown
instructions to insert. Carlson et al. [5] introduce Sniper, a
full-system simulator that predicts run time by grouping
instructions between cache-miss and branch-misprediction
events into coarse intervals, This abstraction runs at mil-
lions of simulated instructions per second while keeping
cycle-count error within roughly 25% of measured hardware.
Thus, Sniper could possibly improve the performance of our
approach to determining how much slowdown to add.

8 Conclusion & Future Work

This paper explores six x86 candidates for adding accurate,
side-effect-free, and distributed slowdown at the basic block
level. Of the six candidates, we found NOP and MOV to be
the most suitable. They achieved the target slowdown at a
program and basic block level, while maintaining the observ-
able performance behavior of the used benchmark. Thus,
adding slowdown preserves where the program proportion-
ally spends its time as observed by a Java profiler. This means,
the percentage of run time spent in each method remained
consistent between the normal and slowed down execution.

In future work, we aim to explore the application of our
slowdown technique to the identified use cases of race de-
tection and virtual speedup. Slowdown at the basic-block
level may lead to more accuracy and precision compared to
coarser-grained approaches. We already started assessing
the accuracy of profilers [4].

Evaluating Candidate Instructions for Reliable Program Slowdown at the Compiler Level

References

(1]

Andreas Abel and Jan Reineke. 2022. uiCA: accurate throughput
prediction of basic blocks on recent intel microarchitectures. In Pro-
ceedings of the 36th ACM International Conference on Supercomput-
ing (Virtual Event) (ICS "22). ACM, Article 33, 14 pages. doi:10.1145/
3524059.3532396

Matteo Basso, Aleksandar Prokopec, Andrea Rosa, and Walter Binder.
2023. Optimization-Aware Compiler-Level Event Profiling. ACM Trans.
Program. Lang. Syst. 45, 2, Article 10 (jun 2023), 50 pages. doi:10.1145/
3591473

Humphrey Burchell, Octave Larose, Sophie Kaleba, and Stefan Marr.
2023. Don’t Trust Your Profiler: An Empirical Study on the Precision
and Accuracy of Java Profilers. In Proceedings of the 20th ACM SIGPLAN
International Conference on Managed Programming Languages and
Runtimes (MPLR 2023). ACM, 100-113. doi:10.1145/3617651.3622985
Humphrey Burchell and Stefan Marr. 2025. Divining Profiler Ac-
curacy: An Approach to Approximate Profiler Accuracy Through
Machine Code-Level Slowdown. Proceedings of the ACM on Pro-
gramming Languages 9, OOPSLA2, Article 402 (Oct. 2025), 29 pages.
d0i:10.1145/3763180

Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper:
Exploring the Level of Abstraction for Scalable and Accurate Parallel
Multi-Core Simulation. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis
(Seattle, Washington) (SC ’11). ACM, Article 52, 12 pages. doi:10.1145/
2063384.2063454

Charlie Curtsinger and Emery D. Berger. 2015. COZ: Finding Code that
Counts with Causal Profiling. In Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP ’15). ACM, 184-197. doi:10.1145/
2815400.2815409

Gilles Duboscq, Thomas Wiirthinger, Lukas Stadler, Christian Wim-
mer, Doug Simon, and Hanspeter Mossenbéck. 2013. An intermediate
representation for speculative optimizations in a dynamic compiler. In
Proceedings of the 7th ACM Workshop on Virtual Machines and Interme-
diate Languages (VMIL °13). ACM, 1-10. doi:10.1145/2542142.2542143

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

VMIL ’25, October 12-18, 2025, Singapore, Singapore

Andre Takeshi Endo and Anders Moller. 2025. Event Race Detection
for Node.js Using Delay Injections. In 39th European Conference on
Object-Oriented Programming (ECOOP 2025) (LIPIcs, Vol. 333). Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 9:1-9:28. doi:10.4230/
LIPICS.ECOOP.2025.9

John L. Hennessy and David A. Patterson. 2017. Computer Architecture:
A Quantitative Approach (6th ed.). Morgan Kaufmann. 936 pages.
Intel. 2024. Optimizing Earlier Generations of Intel® 64 and IA-
32 Processor Architectures, Throughput, and Latency. Technical
Report. https://www.intel.com/content/www/us/en/content-
details/814199/optimizing-earlier-generations-of-intel-64-and-ia-
32-processor-architectures-throughput-and-latency.html

Stefan Marr, Benoit Daloze, and Hanspeter Mossenbock. 2016. Cross-
Language Compiler Benchmarking—Are We Fast Yet?. In Proceedings of
the 12th Symposium on Dynamic Languages (Amsterdam, Netherlands)
(DLS’16). ACM, 120-131. doi:10.1145/2989225.2989232

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pi-
ramanayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Finding
and Reproducing Heisenbugs in Concurrent Programs. In Proceedings
of the 8th USENIX conference on Operating Systems Design and Im-
plementation (San Diego, California) (OSDI’08). USENIX Association,
267-280.

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. 2010. Evaluating the Accuracy of Java Profilers. In Proceed-
ings of the 31st ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’10). ACM, 187-197. doi:10.1145/
1806596.1806618

Bogdan Alexandru Stoica, Shan Lu, Madanlal Musuvathi, and Suman

Nath. 2023. WAFFLE: Exposing Memory Ordering Bugs Efficiently
with Active Delay Injection. In Proceedings of the Eighteenth European

Conference on Computer Systems (Rome, Italy) (EuroSys ’23). ACM,
111-126. doi:10.1145/3552326.3567507

Hao Xu, Qingsen Wang, Shuang Song, Lizy John, and Xu Liu. 2019. Can
we trust profiling results?: understanding and fixing the inaccuracy in
modern profilers. In Proceedings of the ACM International Conference on
Supercomputing (ICS °19). ACM, 284-295. doi:10.1145/3330345.3330371

https://doi.org/10.1145/3524059.3532396
https://doi.org/10.1145/3524059.3532396
https://doi.org/10.1145/3591473
https://doi.org/10.1145/3591473
https://doi.org/10.1145/3617651.3622985
https://doi.org/10.1145/3763180
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1145/2815400.2815409
https://doi.org/10.1145/2815400.2815409
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.4230/LIPICS.ECOOP.2025.9
https://doi.org/10.4230/LIPICS.ECOOP.2025.9
https://www.intel.com/content/www/us/en/content-details/814199/optimizing-earlier-generations-of-intel-64-and-ia-32-processor-architectures-throughput-and-latency.html
https://www.intel.com/content/www/us/en/content-details/814199/optimizing-earlier-generations-of-intel-64-and-ia-32-processor-architectures-throughput-and-latency.html
https://www.intel.com/content/www/us/en/content-details/814199/optimizing-earlier-generations-of-intel-64-and-ia-32-processor-architectures-throughput-and-latency.html
https://doi.org/10.1145/2989225.2989232
https://doi.org/10.1145/1806596.1806618
https://doi.org/10.1145/1806596.1806618
https://doi.org/10.1145/3552326.3567507
https://doi.org/10.1145/3330345.3330371

VMIL °25, October 12-18, 2025, Singapore, Singapore

Humphrey Burchell and Stefan Marr

A Appendix
Table 2. Candidate slowdown instructions used in our study

Name Opcode Template Definition / Purpose Motivation for Inclusion

NOP (2-byte) 66 90 No operation; e.g., used for code align- Has zero side effects and intended for this
ment. use.

MOV (reg—reg) 89 /r /r Dummy move of a register to itself, with- A fast and highly optimized instruction.
out side effects.

PUSH+POP 50 /r 58 /r Push a register onto the stack and then A small sequence that may consume more
pop it back into the same register. cycles.

SFENCE OF AE Store-fence; ensures all preceding stores Serializing delay that leaves registers un-
are globally visible before later memory touched.
operations.

Long PUSH+POP sequence SUB SP, IMM Allocates temporary stack space, spills Uses the vector unit of the CPU, to com-

PAUSE

VMOVDQU [SP], VEC
VMOVDQU VEC, [SP]
ADD SP, IMM

F3 90

and refills a vector register, then releases
the space—consumes cycles without af-
fecting logic.

Used in spin-wait loops, as a hint for the
CPU to improve their performance.

pare the performance behavior with a nor-
mal PUSH+POP.

A purpose-built delay instruction.

	Abstract
	1 Introduction
	2 Background
	3 Use Cases, Requirements, and Candidates for Machine-code-level Slowdown
	3.1 Use Cases
	3.2 Requirements
	3.3 Candidate Instructions

	4 Inserting Slowdown at the Compiler Level
	4.1 The LIR Slowdown Phase
	4.2 Using Hardware Counters to Determine Slowdown Amount

	5 Evaluating Candidates
	5.1 Methodology
	5.2 Required Number of Slowdown Instructions
	5.3 Run-time Overhead
	5.4 Distribution of Slowdown Among Blocks
	5.5 Performance Behavior with Slowdown
	5.6 Best Candidate for Accurate, Side-Effect-Free, and Distributed Slowdown

	6 Importance of Distributing Slowdown
	7 Related Work
	8 Conclusion & Future Work
	References
	A Appendix

