
Multicore Programming
The SLY3 Programming Language

Pablo Inostroza Valdera
<pinostro@vub.ac.be>

23 June 2011

1 Introduction

SLY3 is a Smalltalk dialect that features two concepts in order to deal with par-
allelism: ensembles, which are collections of objects that can receive parallel
messages, and modifiers, which decorate messages in order to modify their par-
allel behavior (adverbs) or to specify how to handle reductions (gerunds). In
this article we analyze SLY3’s programming model.

SLY3 is a language being developed in the context of the Renaissance Project1,
at IBM. With SLY3, their authors David Ungar and Sam Adams explore abstrac-
tions for nondeterministic parallel programming. SLY32 is the experimental
successor of LY, a javascript-like interpreted language that was implemented on
top of Smalltalk [UA10]. The main idea behind the design of SLY3 is that mul-
ticore programming is commonly addressed by restricting the nondeterminism
parts and trying to enforce strict determinism. As an example of this, Ungar and
Adams refer to the actors paradigm. While the actor model certainly adds some
order to concurrent computations, the truth is that some nondeterminism still
persists because the global order in which messages arrive to an actor is nonde-
terministic. They proposed that instead of trying to restrict the nondeterminism,
it should be embraced. The LY language and, later on, the SLY3 language are
steps towards that direction. In this article we discuss the latter.

2 Ensembles, or How to Represent A Flock of Birds

SLY3’s key elements were conceived by observing the nature. Think of a flock of
birds, an ant colony or a school of fishes. These are all examples for a multitude
of independent agents, acting in a nondeterministic way, whose aggregated be-
havior is more complex than that of the individuals. In other words, a more
complex behavior emerges. The idea of a whole formed from independent units

1http://soft.vub.ac.be/˜smarr/renaissance/
2As the 3 in Sly3 indicates, Sly itself underwent already three iterations of design.

1

is key to SLY3, and it has been reflected in the concept of an ensemble. An en-
semble is a collection of objects, subject of receiving messages as a whole. In
the following example, we create an ensemble and execute an operation on it:

numbers := Sly3Ensemble with: {1. 2. 3. 4. 5}.
squaredNumbers := numbers squared.

This code yields: %{1. 4. 9. 16. 25}. 3

Notice how the ensemble received a message as a whole, but it acted on
each individual in order to produce a new ensemble with all of the elements
squared. It is not surprising to know that the default behavior of this mapping
is parallel, i. e., a different thread of execution is triggered for each individual
computation. The standard execution strategy in this this simple example is as
follows:

• The message was delegated to members of the ensemble, creating a par-
allel process for the evaluation of each of the messages. We can say that
each member was treated individually and was executing its own task.

• For generating the final result, a new ensemble was created from the re-
sults of all the tasks of the previous step. We can say that we are ensem-
bling together all the individual results.

Notice that we have put in bold letters two words: individually and ensem-
bling. We have done so, because both words characterize a strategy for handling
a parallel computation. Actually, this is the default strategy in SLY3, but the pro-
gramming model was designed to be able to customize these behaviors.

3 Adverbs and Gerunds, or How to Modulate Par-
allel Behavior

The basic model of message handling for an ensemble is:

1. The ensemble that receives the message is treated in accordance to its
adverb. A receiver’s adverb precedes the message name. In the absence of
an explicit one, the default adverb for receiver, namely individualLY, is
used 4. Adverbs’ names always end in LY.

2. If there are operands, they have to be treated in accordance with their
adverbs. An operand adverb follows the message name. In the absence of
an explicit one, the default adverb for operands, namely wholLY, is used.

3. The operation is executed according to an overall strategy, also deter-
mined by an adverb.

3Recall that the curly braces represent an array in Smalltalk. In SLY3, curly braces preceded by
% denote an ensemble.

4We elaborate on the meaning of individualLY in subsequent paragraphs.

2

Adverb Informal description
wholLY just pass me along as a whole ensemble
individualLY create a process/thread for each of my members
collectionLY treat me as a collection instead of an ensemble
duplicativeLY copy each of my members, to produce a new ensem-

ble
roundLY create a process for each combination of the re-

ceiver’s members and my members
randomLY chose n of my members randomly, n is a parameter

of this adverb
valueLY take a block and apply it to each of my members

Table 1: Some of the principal adverbs in SLY3.

4. The result of the operation is reduced in accordance to a gerund. In the
absence of an explicit one, the default gerund, namely ensemblING, is
used. Gerunds’ names always end in ING.

Regarding the point 3, it suffices to mention that currently there are only
three overall strategies, namely, serially, plainly and the default one, which we
can call parallelly5. Serially forces serial executions, so no processes/threads
are spawned to compute the results. This can be useful either for semantic
reasons or when the cost of parallel execution is to high, i. e., when we are
below the sequential threshold. The adverb plainly can be used to turn off
ensemble behavior, and therefore, to treat the ensemble as a collection (e. g.,
we could ask for the size of an ensemble by using plainly, and this would not
imply sending a message to each of its members). For the sake of brevity, we
are not going to discuss the overall strategies further, since they are not relevant
for grasping the essence of the SLY3 programming model.

The syntax of SLY3 is cumbersome, so next we present some examples in
order to provide a more clear idea of how to express things in this language.
Let’s analyze them in the light of three of the steps presented before (1, 2 and
4; 3 is excluded since are not going to discuss the overall strategy). In order to
guide our analysis, figure 1 presents a table with brief descriptions of some of
the main adverbs in SLY3, and their impact on the message evaluation process.
We have not included a similar table for gerunds, because their names are in
general more self descriptive.

Example 1

%{true. true. false. true} andING

• In this example, there are no adverbs specified, therefore, the receiver’s
adverb is the default one, i. e., individually. This implies that the pro-

5Note that the metaphor of the adverb is taken to an extreme in SLY3. Many words that do not
sound like adverbs are adverbialized in order to fit in the conceptual framework.

3

cessing of the members is done independently (i. e. in different Smalltalk
processes).

• There are no arguments, therefore, no argument’s adverb.

• There is a gerund andING that acts on the result of the operation reduc-
ing the independent results coming from different processes. As its name
indicates, andING performs logical and over the members of the result-
ing ensemble. Notice that there no actual message specified here, thus,
andING is applied to unchanged set of members of the ensemble.

• Therefore, the result of this operation is: false.

Example 2

%{1. 2. 3} plusRoundLY: %{10. 20. 30}

• Here are no adverbs specified for the receiver, therefore, the receiver’s
adverb is the default one, i. e., individually. This implies that the pro-
cessing of the members is done independently (i. e. in different process-
es/threads).

• roundLY is an argument to the operand (%10. 20. 30). This adverb
says: create a process/thread for each combination of the receiver’s mem-
ber and the argument’s member; acting as a cartesian product.

• There is no gerund, which means that the default one (ensemblING) is
used.

• Therefore, the result of this operation is: %{11. 12. 13. 21. 22.
23. 31. 32. 33}.

Example 3

%{1. 2. 3} valueLY: [:x | x * 10]

• valueLY is an argument of the receiver, therefore, the receiver has to be
mapped to a new ensemble using the given block as the mapper.

• There are no arguments, therefore, no argument’s adverb. Recall that the
block is an argument to the adverb. As we can see, the problems of Sly3’s
syntax become evident in these cases.

• Therefore, the result of this operation is: %{10. 20. 30}.

4

4 An Overview of Sly3’s Implementation

In order to have a comprehensive view of the spectrum of the current custom
behaviors available for direct use, in figure 1 we show the hierarchy of gerunds
and adverbs that we can find in the current image of SLY3. Notice that this forms
a restricted vocabulary that we can use as a basis of more complex strategies,
in a LEGO-like way. In fact, we can see this hierarchy as a custom domain-
specific language suited for the description of common strategies for handling
parallelism.

Figure 1: The hierarchy of modifiers of SLY3.

Based on what we have discussed so far, we can characterize SLY3 as:

• An Object-oriented language, descendant of Smalltalk, which incorporates
ensembles as first-class entities to model parallelism.

• It features parallelism by default. As soon as a message is sent to an en-
semble, it is assumed that the processing will be spawned as independent

5

tasks over the members of this ensemble.

• Implicit parallelism. The processes that handle messages for ensembles
are spawned under the hood, and programmers interact without having to
switch to a parallel mindset.

• The way the receiver and the operands of a message are treated is speci-
fied by a set of adverbs.

• The way the result is reduced is specified by a set of gerunds.

• The messages are not reified as for instance in the case of Communicating
Sequential Processes or actors.

• Communication is assumed to be synchronous.

• The processes are not reified as in the case of actor-based computing.

5 A Note on the Evaluation Process

The SLY3 language is implemented as an extension of a Smalltalk Virtual Ma-
chine, the RoarVM. The current strategy is that whenever a message to an en-
semble is detected, a custom message dispatcher is launched in order to handle
it. Thus, the message is parsed and evaluated at runtime6. The message is an-
alyzed by partitioning the receiver according to its adverb, and pairing it with
the arguments according to arguments’ adverbs. Then, the actual operation is
executed in whichever set of operands resulted from the previous processing.
The final result is reduced according to the gerund. When we use the expres-
sion according to, it is worth to highlight that the actual behavior is encoded in
the classes of the gerunds an adverbs.

Below we give as example the implementation of the totallING gerund. In
the image it is the only method of the class Sly3ModTotalling. Notice, that it
nothing more but the implementation of a simple summing policy.

1 ; method of the class Sly3ModTotalling
2 reduceForEvaluator: ev
3 "Sum the elements in results and return the result.
4 Assumes these elements understand +."
5
6 | result results |
7 results := ev result.
8 results isEmpty ifTrue:
9 [self error:

10 ’No members , how should we handle? proceed for nil ’.
11 ˆnil].
12 result := 0.
13 results do:[:each | result := each + result].
14 ev result: result

6There is current work on optimizing these processes by using a caching strategy

6

Below we give the code for the two relevant method of the Sly3ModCollectionly
class that implements the collectionLY adverb in Sly3. Although it is neces-
sary to deeply understand the behavior of the process of evaluating a message
in order to understand this code, at least we can have an intuition that what is
happening at some point is that a collection is created and returned (see line
17). Eventually, this is how the creation of a collection from an ensemble (which
is what collectionLY does) is implemented.

1 ; methods of the class Sly3ModCollectionly
2 amendOperandTuples: operandTuplesIncludingThisOne
3 | ens |
4 ens := (operandTuplesIncludingThisOne collect: [:ot | ot last]).
5 ˆ operandTuplesIncludingThisOne collect: [:ot |
6 ot copy removeLast; addLast: ens; yourself]
7
8
9 extendOperandTuples: operandTuplesSoFar

10 operand: operand
11 membersOrNil: operandMembers
12 | mems |
13 mems := operandMembers ifNil: [operand]
14 ifNotNil: [operandMembers].
15 ˆ operandTuplesSoFar
16 ifEmpty: [OrderedCollection with:
17 (OrderedCollection with: mems)]
18 ifNotEmpty: [operandTuplesSoFar collect:
19 [:tuple | tuple copy addLast: mems; yourself]]

Therefore, each modifier in SLY3 is self descriptive and fully determines the
impact that their presence provokes on the evaluation process.

6 Implementing MapReduce in SLY3

In order to show an example of how to use SLY3, we have implemented a naive
MapReduce framework7. It is worth to stress that the conciseness of the code
that we eventually obtain is a consequence of both using SLY3 and the applica-
tion of an Object-oriented approach. The framework relies on ensembles that
receive messages. By doing that, the messages are implicitly sent in parallel, so
we do not have to specify this in the code. We next discuss the core excerpts of
the code.

Imagine two well-known applications of MapReduce. First, we want to count
the number of occurrences of words in a set of documents. Another application
is to know in which documents some words are found. In order to do that, the
MapReduce paradigm requires us to provide the problem-specific knowledge by
means of a map procedure and a reduce procedure.

Since SLY3 being an object-oriented language, we have modeled the MapRe-
duce problem-independent behavior as a class MapReduce. Any particular imple-

7Take a look at the course notes for an Erlang implementation of the same examples.

7

mentation has to subclass this class and override two abstract methods, namely,
mapForKey:value: and reduceForKey:values:.

Facing the problem of counting words in a document, below are the methods
of the class CountWordsMapReduce that implement this behavior in SLY38.

1 "Specific methods of the class CountWordsMapReduce"
2 mapForKey: ignore value: fileName
3 | words |
4 words := self consult: fileName.
5 ˆ words valueLY: [:y| {y. 1}]
6
7 reduceForKey: word values: counts
8 ˆ {word. counts totallING}
9

10 consult: file
11 ˆ files at: file

Facing the problem of indexing the texts using the words that they contain,
below are the methods of the class TextIndexingMapReduce that implement this
behavior in SLY3.

1 "Specific methods of the class TextIndexingMapReduce"
2 mapForKey: ignore value: fileName
3 |words |
4 words := self consult: fileName.
5 ˆ words valueLY: [:word| {word. fileName}]
6
7 reduceForKey: word values: names
8 ˆ {word. names members asSet}
9

10 consult: file
11 ˆ files at: file

Notice that in both cases, it suffices to use combinations of the existing ad-
verbs to achieve the desired functionality (see lines 5, 8 of the first listing and
line 5 in the second one). Moreover let’s now analyze the class MapReduce, that
implements all the machinery of our naive MapReduce implementation.

1 "Specific methods of the class MapReduce"
2 dictionaryToList: dict
3 |lst|
4 lst := OrderedCollection new.
5 dict associationsDo:
6 [:assoc| lst add:{assoc key.
7 Sly3Ensemble
8 withMembersFrom: assoc value}].
9 ˆ Sly3Ensemble withMembersFrom: lst

10
11 do: input
12 |dict nonFlatValues flatValues intermediateValues|
13 nonFlatValues:= input valueLY: [:pair |
14 self mapForKey: (pair at: 1) value: (pair at: 2)].

8Notice that for sakes of simplicity, we have modeled a filesystem as a Dictionary whose keys
are strings that represent file names and whose values are ensembles corresponding to the set of
words in a file.

8

15 flatValues := nonFlatValues members
16 inject: (OrderedCollection new)
17 into: [:acc :cur |
18 acc addAll:
19 cur members asOrderedCollection.
20 acc].
21 dict := self groupValuesByKey: flatValues.
22 intermediateValues:= self dictionaryToList: dict.
23 ˆ intermediateValues valueLY:
24 [:pair | self reduceForKey: (pair at: 1)
25 values: (pair at: 2)]
26
27 groupValuesByKey: keyValues
28 | dict|
29 dict := Dictionary new.
30 keyValues do:[:keyValue |
31 | key value |
32 key := keyValue at: 1.
33 value := keyValue at: 2.
34 (dict includesKey: key)
35 ifTrue:
36 [(dict at:key) add: value]
37 ifFalse:
38 [dict at: key
39 put: (OrderedCollection newFrom: {value})] .
40].
41 ˆ dict
42
43 mapForKey: key value: value
44 self subclassResponsibility.
45
46 reduceForKey: key values: values
47 self subclassResponsibility.

As it is possible to see in lines 9, 13 or 23 of the above code, the framework
itself also profits from the fact that the data structures that are being passed are
ensembles. By having ensembles as the main element being passed around, it is
possible to have implicit parallel behavior, which is the key of the MapReduce
approach. Evidently, in this case we are discussing a very limited version of
MapReduce meant to be used on a single computer, but it is still useful to show
how the implicit parallelism in SLY3 works.

7 Conclusions

In the spectrum of language abstractions for dealing with parallelism and con-
currency, SLY3 is a language that has opted for a conservative style, in the sense
that it is a specific element of the language (an ensemble) the one that is sub-
ject of parallelism. On the other hand, the stress has been put on giving a set
of tools to programmers, enabling them to combine these tools. For customized
strategies, it is the impression of the author of this article that the level of gran-
ularity is too coarse-grained. Although it is conceivable to extend the set of
adverbs and gerunds by extending the hierarchy aforementioned, this implies

9

to understand the SLY3 implementation in very detail, something that we most
likely do not expect from application programmers. It is possible to think of
a meta-programming framework that could inject custom functionalities in the
language, lowering the complexity for extending the set of primitives.

Regarding the approach to parallelism, it is implicit and synchronous. Pro-
grammers are not aware of how computations are spawned or scheduled, and
the only means they have to initiate parallel computations is by using ensem-
bles.

As regards to the syntax, SLY3 uses decorated keyword based messages to
model the way the message is handled by the virtual machine. Although it is
conceivable that this schema can be improved, there are some problems orig-
inated from the fact that adverbs can decorate receivers, arguments, and the
overall strategy. If we add to this complexity the gerunds, it is clear that it is
difficult to express these multidimensional facets using a textual syntax.

To sum up, SLY3 is a language that incorporates in its design a series of
patterns to deal with parallelism, but the mechanism for extending the set of
parallel primitives could be reconsidered, in order to reduce the complexity of
extending SLY3. However, the MapReduce example has shown that it is possible
to concisely express complex patterns of interactions in SLY3, as soon as these
patterns fall within the give set of SLY3’s primitives.

References

[UA10] David Ungar and Sam S. Adams. Harnessing emergence for manycore
programming: early experience integrating ensembles, adverbs, and
object-based inheritance. In Proceedings of the ACM international con-
ference companion on Object oriented programming systems languages
and applications companion, SPLASH ’10, pages 19–26, New York, NY,
USA, 2010. ACM.

10

