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Abstract
In order to construct a test-bed for investigating  new 
programming paradigms for future “manycore” systems 
(i.e. those with at least a thousand cores), we are building a 
Smalltalk virtual machine that attempts to efficiently use a 
collection of 56-on-chip caches of 64KB each to host a 
multi-megabyte object heap. In addition to the cost of inter-
core communication, two hardware characteristics 
influenced our design: the absence of hardware-provided 
cache-coherence, and the inability to move a single object 
from one core’s cache to another’s without changing its 
address. Our design relies on an object table, and the 
exploitation of a user-managed caching regime for read-
mostly objects.  At almost every stage of our process, we 
obtained measurements in order to guide the evolution of 
our system.

The architecture and performance characteristics of a 
manycore platform confound old intuitions by deviating 
from both traditional multicore systems and from 
distributed systems. The implementor confronts a wide 
variety of design choices, such as when to share address 
space, when to share memory as opposed to sending a 
message, and how to eke out the most performance from a 
memory system that is far more tightly integrated than a 
distributed system yet far less centralized than in a several-
core system. Our system is far from complete, let alone 
optimal,  but our experiences have helped us develop new 
intuitions needed to rise to the manycore software 
challenge.

Categories and Subject Descriptors D.3.4 [Programming 
Languages]:  Processors - interpreters, memory management 
(garbage collection), Run-time environments:  D.3.3 
[Programming Languages]: Language Constructs and Features - 
Dynamic storage management, Concurrent programming 
structures :  D.4.2 [Operating Systems]:  Storage Management - 
Allocation/deallocation strategies: C.1.2 [Processor 

Architectures]: Multiple Data Stream Architectures 
(Multiprocessors) - Multiple-instruction-stream, multiple-data-
stream processors (MIMD): C.4 [Performance of Systems]: 
Design studies, Measurement  techniques: C.3.2 [Memory 
Structures]: Design styles - Cache memories.

General Terms Design, Experimentation, Performance, 
Measurement.

Keywords manycore, object heap, virtual machine, Smalltalk,  
Squeak, object table, cache performance

1. Introduction
The microprocessor industry’s transition from single core 
to multicore to manycore single chip multiprocessors poses 
an epochal challenge to the software industry.  How can 
software applications reap continuing performance benefits 
from these disruptive improvements in hardware 
technology when most existing programming models and 
languages have co-evolved in the single core uniprocessor 
era?  Despite decades of advances in computer science, 
programming parallel systems remains beyond the reach of 
all but a tiny handful of the world’s software developers.  
From petaflop computers with over one million cores like 
BlueGene/P™ [1], to Graphics Processing Units (GPUs) 
with hundreds of shader cores to the 9 core Cell/B.E.™ [2] 
in Playstation3™, programmability is widely recognized as 
a significant challenge.

The Renaissance project at IBM Research was chartered in 
2008 as an exploratory research effort to take a clean-slate 
approach to finding a programming model suitable for the 
following twin challenges: how to fully exploit the massive 
parallelism of future manycore hardware in a manner that 
will also be accessible to the majority of today’s 
“productivity programmers.”  We chose a two-pronged 
approach for this project, hardware-up and application-
down.  For hardware, we targeted a future hypothetical 
1000-core heterogenous multiprocessor with a large 
majority of identical, general purpose cores.  We are 
prototyping this system using 16 TILE64™ manycore 
processors from Tilera [3],  each supporting 64 RISC-based 
processor cores.  From the application perspective, we 
selected virtual world physics simulation to represent the 
class of large scale distributed relaxation problems we 
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believe will finally be commercially feasible on future 
manycore systems.

We selected the Squeak Smalltalk system [4] as a software 
substrate for our investigations.  As a widely ported open 
source virtual machine, class library and full development 
environment,  Squeak was one of the most flexible systems 
available. The authors’ extensive experience in Smalltalk 
virtual machine design, application development and 
programmer education was a big plus, and the tiny size of 
the system relative to alternatives like commercial Java 
systems was a good fit for the smaller, relatively slow and 
cache-starved cores of our chosen hardware.

Having selected our hardware and software starting points, 
the next step was to port the existing Squeak Smalltalk 
virtual machine to a single TILE64 manycore processor 
and rewrite it to function in parallel on the 56 cores 
available for user programs. (The other 8 cores were 
running the Linux operating system device drivers in the 
configuration we were using.)

In moving from a single-core Squeak virtual machine, to a 
56-core system, we decided to tackle the memory system 
first, and save application-level parallelism for a 
subsequent effort.  The memory system can be further 
subdivided into support for reclaiming unused memory 
(garbage collection), and support for creating, accessing, 
and modifying objects (the mutator).  While garbage 
collection presents an interesting challenge for this system, 
we focused on the mutator portion of the memory system 
and deferred advanced work on the collector. 

This paper describes:

• a series of experiments we undertook to figure out how 
to host an object heap on manycore hardware, 

• the evolution of the resulting design, and 

• its effectiveness at overcoming the performance penalty 
of dispersing the heap over a large number of small 
caches.

The roadmap for this paper is as follows:  We first discuss 
multiprocessor Smalltalk/Java systems, then overview our 
chosen hardware and software platforms, and finally 
describe our efforts to implement a manycore object heap 
in detail.

2. Related Work: Multiprocessor Smalltalk/Java 
Systems

Space limitations force us to omit discussion of much 
important work, especially in the areas of scientific 
computing, distributed systems,  ultra-large systems, and 
even related manycore systems. 

MS was, as far as we know, the first system to run a 
Smalltalk or Java-like system on a multiprocessor [5, 6]. 
The hardware was a five-processor DEC Firefly, a machine 
with five MicroVAX processors and 16 Mb of shared 
memory, with a per CPU cache of 16 Kb, and hardware 

support for cache coherency [7].  The virtual machine was 
an interpreter, based on Berkeley Smalltalk [8] and the 
memory system was based on a later version of Berkeley 
Smalltalk that incorporated Generation Scavenging and 
eliminated indirection  (via an object table) for object 
references [9, 10].

The J-machine was a distributed system built in 
anticipation of high levels of on-chip integration [11]. It ran 
a language called Concurrent Smalltalk, a class-based 
language with some static typing,  parallel execution 
semantics, and a Scheme-like syntax [12]. It used an object 
table (called a BRAT), but rather than putting that table in 
globally-accessible memory, it relied on sending messages 
to an object’s “home” processor in order to find the object. 

The Mushroom system was a multiprocessor designed for 
Smalltalk [13, 14]. Its memory system hardware mapped 
virtual to physical addresses at a fine granularity. This 
design permitted the runtime system to move an object 
around in physical memory without paying a speed penalty 
for address translation [15]. The Mushroom memory 
architecture was the inspiration for our choice to employ an 
object table as a means to move an object from core to 
core. Unlike Mushroom, our mutator must pay a time 
penalty as the address translation is performed by software.

3. The TILE64 Manycore Processor
The TILE64 processor, based on the Raw machine project 
at MIT [16], may well portend manycore computer 
architectures to come. Containing a grid of 64 RISCs,  its 
design emphasizes scalability.  Each tile includes a network 
processor in addition to the instruction processor.

The designers of manycore processors must trade off the 
number of cores against the amount of memory local to 
each core. As the local memory size increases, the area 
occupied by each core increases, and given a constraint on 
the size of the die the number of cores decreases. We 
believe that future manycore processors may likely have far 
less per-core memory than today’s multicore CPUs. The 
TILE64 processor seems like a  harbinger of things to come 
in this respect as well, albeit perhaps an extreme data-point.

As Table 1 shows, each Tilera core possesses a mere 64 KB 
of local memory (known as the L2 cache), and  a remote 
(inter-tile,  or main memory) access will require a wait of at 
least 35 cycles. If you are old enough, you might think of 
this chip as a miniature roomful of incredibly fast 
PDP-11’s.  The last column in Table 1 illustrates the 
criticality of cache hit rates by estimating the MIPS that 
would result from code with extremely poor caching 
behavior. 

In concert with the hardware itself, Tilera provides an 
extensive environment to support software development for 
the TILE64: The Tilera Multicore Development 
Environment [17],  or MDE, provides numerous command-
line and Eclipse-based tools for developing, debugging, 
and profiling manycore applications.
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condition cache 
size, 
bytes

miss 
penalty, 
cycles

line 
size, 
bytes

worst case 
MIPS 

equivalent 

max 0 600 - 1800

branch 
mis-predict

2 250

data in L1 8 KbI, 8 
KbD

2 16 b 250

miss L1, 
hit L2

64 Kb 8 64 b 80

miss L2, 
hit L3

4 Mb 35–49 64 b 20

miss L3 4 Gb 69–88 10

Table 1. TILE64 cache characteristics

The TILE64 was originally targeted toward streamed video 
compression, packet filtering and other network 
applications.  Our project, on the other hand, explores how 
to run general-purpose object-oriented programs on such an 
architecture. Since such a system relies on a heap of 
interconnected objects ranging from a few to hundreds of 
mega-bytes, we believe that minimizing the overhead of 
dispersing such a heap across a myriad of cores will be 
critical to obtaining reasonable performance. In this paper, 
we report on our experiences in addressing this problem.

4. Squeak
Our work is based on the Squeak open source Smalltalk 
system [18]. This system includes  support for the Smalltalk 
programming language, an integrated development 
environment (IDE), and a virtual machine based on a 
bytecode interpreter. The language includes features such 
as user-defined control structures and operator overloading 
that will help us explore new parallel programming 
paradigms. The IDE is tuned toward an exploratory style of 
programming that will also expedite our research and foster 
creativity. Since  the Squeak system is self-hosting,  i.e. the 
tools and environment are written in Smalltalk, every time 
we use the environment we are testing our virtual machine. 

In addition, Smalltalk’s age yields another benefit: The  
older of its two user interface frameworks (known as MVC, 
the o r ig ina l implementa t ion o f Mode l -View-
Controller [19-21]) was originally designed in the late 
1970’s, long before the age of gigabyte memories and 
gigahertz processors.  As a result, it reflects compromises 
between generality and efficiency that permit a machine 
that ran almost impossibly slow by 2009  standards (a 
2 MB Macintosh Plus from 1986, for instance) to provide a 
good interactive graphical experience while running in an 
interpreted language. By contrast, newer systems built for 

languages such as Java have expanded to consume the 
bountiful resources of modern pre-manycore hardware.

Of all of Squeak’s components, its virtual machine is most 
central to this effort. As a result of the optimizations 
developed by the original Smalltalk implementors [18], a 
virtual image containing the full IDE, two user interface 
frameworks, a generous class library (both source code and 
compiled methods) and a plethora of auxiliary tools fits in 
16 MB, and a stripped-down image containing a fully-
functional IDE and class library  can fit in as little as 
1.7 MB. These numbers are dwarfed by today’s mainstream 
Eclipse environments and Java heaps.   By using Smalltalk, 
we get to simulate a future of larger (mainstream) heaps 
running on a manycore processor with larger per-core 
memories.

Smalltalk’s memory efficiency partly results from its 
reliance on a bytecode interpreter for execution, rather than 
a (dynamic) compiler.  Future manycore object-oriented 
virtual machines may well rely on compilation, but for our 
work,  we elected to save both implementation effort and 
possibly cache misses by sticking with an interpreter.  As it 
turned out, misses in the instruction cache still accounted 
for a substantial number of stalls (see section 5.4). Readers 
who wish to use our results in guiding their own 
compilation-based designs will have to account for the 
consequences of a different execution mechanism. 

The Squeak virtual machine represents activation records 
(“contexts”) by ordinary Smalltalk objects. The currently 
executing context is called the “active context.” Squeak 
also implements multiple, cooperatively-scheduled threads 
that all run in the same object heap. Although the use of 
contexts often adds overhead to calls and returns when 
compared to using frames on a stack, we felt that the 
potential ease of thread migration via simply migrating 
context objects outweighed the performance penalty. Our 
virtual machine therefore follows the classic Squeak/
Smalltalk model by using context objects for its activation 
records. 

Although we benefited from the current design of the 
Squeak virtual machine, we knew that the memory system 
would be substantially different and hence, guided by the 
reference implementation, rewrote it and the bytecode 
interpreter. We reused the existing code for some 
primitives,  including the graphics operations, that were 
written in C in the original Squeak system.  In our rewritten 
portions, we used the C++ static type system to ensure that 
object references were not conflated with object addresses. 
The rest of the paper explains the changes we made and our 
experience with them.

5. Our Experience
Upon the arrival of our Tilera processors and host 
computers, we undertook to gain insight into our platform 
and then port Squeak to it.




101



5.1.  TILE64 Measurements and Characteristics
In order to guide our efforts, we undertook to measure the 
performance of various operations on the TILE64 
processor. Our measurements used the cycle counter of the 
processor. (We believe that there is an uncertainty of a 
cycle or two, stemming from the details of instruction 
execution.) The measurements confirmed Tilera’s figures 
about the relative speeds of the three levels of channel-
based messages: raw, streaming, and buffered. As expected, 
raw messages were the fastest, taking twenty-three cycles 
to send, and twelve to receive a 10-word message.

5.1.1.  Communication via the Memory System
In addition to messaging, the TILE64 processor supports 
direct-memory-access (DMA) between main memory and 
cache, or between different tiles’ caches. DMA provides the 
benefit of parallel data transfer and instruction execution. 
We compared the time (in cycles) for various DMA 
operations with simple instruction loops to transfer data. 
When transferring data from one tile to another, we 
measured two distances: adjacent tiles (i.e. one hop),  and 
tiles separated by two intervening tiles (i.e. three hops):

Figure 1. TILE64 data movement times (cycles)

1 hop message
3 hop message

load from 3-hop cache
load from memory

DMA from 3-hop cache
DMA from memory

1 hop message
3 hop message

load from 3-hop cache
load from memory

DMA from 3-hop cache
DMA from memory

0 200 400 600 800 1,000

1 word 
moved

10 words 
moved

A s 
expected,  hops added time, and DMA transfers were 
uneconomical for 10-word messages. Perhaps surprisingly 
to those who, like us, are new to manycore systems, raw 
channel messages transferred data faster than executing 
load/store instructions. The bottom line is that for short 
transfers, programmed message-passing saves time 
compared to either programmed- or direct- memory access.

Space limitations preclude further discussion, but our 
results agreed with the information provided by Tilera.

5.1.2.  Homing
It was clear at this point that,  as expected, object location 
would be critical thus we assumed that the virtual machine 
would need to be able to relocate an object from one core 
to another. Therefore, we needed to understand the caching 
policies for our hardware. The TILE64 processor supports 
three caching regimes:

• Read-only data may be cached on any tile, as needed.

• Read-write data may only be cached on one specific tile, 
determined by the page containing the data. If read or 
written by another tile, each word imposes a latency of 

about 35 cycles plus 2 cycles per hop. The caching tile is 
called the “home” tile, and this mechanism is called 
“homing.”

• User-managed data may be cached on multiple tiles, but 
before performing a store instruction, all other tiles must 
invalidate cache lines for the data, and after performing 
the store, the storing tile must force the cache line out to 
main memory.

5.1.3.  Hardware vs. Software Memory Management
As we thought about the application of the TILE64 
architecture to the problem of hosting a heap of objects,  we 
realized something that had a profound effect on the design 
of our virtual machine’s memory system. Our IBM 
colleagues David Bacon and David Grove, both expert in 
Java virtual machines, reminded us that for the sake of 
efficiency it was best to get the hardware to do as much 
work as possible. That led us to the decision to let the 
hardware fill and flush the cache on each core, rather than 
use software to intervene. As a consequence, we employed 
the read-write mode,  a decision we would later revisit. 
Thus, we planned to divide the objects up into N 
contiguous spaces (which we perhaps confusingly called 
“heaps”), one per core, and let the hardware control the 
movement of data from heaps in main memory to caches. 

We also wanted to be able to relocate an object from one 
core to another, in the hope that we could minimize access 
time by maximizing locality. This relocation requirement 
meant that we would need to change the assignment of an 
object to a cache. However, in read-write mode, the 
TILE64 assigns all data in a given page to the same core. 
Since the average object at 44 bytes is far smaller than the 
smallest page at 64 KB, and given the scarcity of 
translation look-aside buffer (TLB) entries, it would not 
have been practical to relocate  an individual object to 
another core without software intervention.

5.1.4.  Summary of Critical TILE64 Characteristics
Putting it all together:

• Accessing an object that is not cached locally takes a lot 
of time.

• Local memory is a critical resource.

• The most efficient method for moving an object or 
performing a remote procedure call employs raw 
channels to pass messages.

• Raw channels require the software to perform flow 
control.

• Scanning the local cache is prohibitively expensive.

• The minimum page size of the TILE64 hardware 
combined with the number of TLB entries rule out 
hardware-based object location management. Subsequent 
designs for Tilera manycore processors have tackled this 
problem [22].
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With these lessons in mind, we set about our initial design 
for the memory system.

5.2. Basic Memory System Design
The standard Squeak system featured direct pointers; an 
object reference was the same as its address:

Object HeapBytecode

Interpreter

OBJ

REF

addr addr

OBJ

OBJ

Figure 2. Direct object pointers 

Given that object location is critical, and given the lack of 
hardware support for object-granularity homing, we 
decided to travel back in time to 1980 and implement an 
object table:

Object 

Table
Object HeapBytecode

Interpreter

OBJ

REF

addr

OOP OBJ

OBJ

addr
OOP

cached

addr

Figure 3. Object Table

An object reference is the address of an Object Table Entry 
(OTE), which in turn contains the address of the object. 
This indirection through the object table permits our system 
to move an object to a different core by first copying the 
contents of the object to another page and then updating its 
OTE. In order to be able to find an object’s OTE from the 
object, we also added a backpointer word to the object’s 
header. 

There are disadvantages to this scheme: while moving an 
object other cores may not write to the object; object 
reference traversals are slower; there is no good single 
place in which to cache the object table; object table entries 
must be reclaimed; object table compaction is problematic; 
and there is a 10% space penalty for the extra header word. 
The drawbacks were outweighed by this scheme’s ease of 
implementation, which allowed us to experiment with 
dynamic object relocation earlier than other alternatives.

Wanting to let the hardware do as much as possible, we 
divided the object space into multiple heaps, one heap per 
core. Each heap was the same size, a power of two, as well 
as an integral number of pages. This constraint optimized 
the computation of the home rank of an object from its 
address. Each heap was described by a “Heap” data 
structure containing a start,  a next-free,  and an end pointer. 
Each heap, along with its associated “Heap” structure was 
homed to its owning core. We used a shared address space 

so that any core could access any object in any heap, or any 
“Heap” structure:

Object Heap
Object Heap

Bytecode

Interpreter

Bytecode

Interpreter

...

Object 

Table
Object HeapBytecode

Interpreter

one per core one per coreglobal

OBJ

REF

addr

OOP OBJ

OBJ

addr

OOP

cached

addr

...

Figure 4. Multiple interpreters, global Object Table, multiple heaps

Throughout this project we found ourselves juggling 
decisions about shared vs. private memory, shared vs. 
private addresses, and homing considerations. These sorts 
of design decisions seem to be a characteristic of the 
manycore world, in which the costs of sharing significantly 
exceed those of the current few-core processors,  yet remain 
economical in many cases, unlike the world of distributed 
systems.

A Smalltalk virtual machine reads in a large number of 
objects from a binary file, called a “snapshot,” at startup 
time. Our system distributed these objects to the various 
heaps in round-robin fashion, like a dealer dispensing 
cards. After reading in these objects, the interpreter 
commenced execution. During execution, when a core 
allocated an object, it placed it in its own heap. Thus, the 
store operations required to update the “Heap” structure 
and to initialize the object were local.

In order to find the Heap structures, each core had its own 
(immutable) array of pointers to them:

Heap 3

Heap 3
Heap 3

Heap 3

Heap 2

Heap 1

heaps 

array start

endheaps 

array

Heap Memory

...

next free

...

one/core globalone/core

heaps 

array

...

1

2

3

4

5

...

56

56

Heap 1 

Memory

Heap 2 

Memory

Figure 5. Heap Array and Heap Memory Layout

Heap 3 

Memory

Heap 56 

Memory

In this phase of our project,  we wanted to optimize memory 
accesses while deferring work on application-level 
multithreading. Therefore,  we chose to implement an 
interpreter with only a single thread and to have that thread 
hop around from core to core in order to optimize memory 
references to objects. (In Smalltalk, “sending a message” to 
an object is equivalent to a virtual function call in other 
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languages.) We expected the most frequently accessed 
objects to be the active context and the message receiver. 
So, in order to maximize locality:

• When sending a message to an object the new active 
context was allocated on the same core as the receiver’s 
home. 

• On every call or return the interpreter thread hopped to 
the core hosting the receiver object of that activation. 

Consequently, references to the receiver and active context 
were always local to the core running the interpreter. We 
called this thread hopping “passing the baton” from core to 
core. The simple algorithm shown below later increased in 
complexity as our design evolved:

call or return

Is receiver a 

SmallInteger?

move thread to 

receiver's core
continue on this core

yes

no

Figure 6. Basic baton passing algorithm

Although these mechanisms ensured local accesses for the 
receiver and active context, accesses to other objects, 
including message arguments would likely be remote, i.e. 
require communication with other cores’ caches or main 
memory. Our virtual machine used the memory system for 
these,  although messaging could potentially have been 
faster.  When we eventually run multithreaded applications 
the memory system may be the more efficient option.

Recall that we reused existing C code for primitive 
operations such as graphics and file operations. In general, 
this code depended on local state, so it was necessary to run 
these primitives on the same core that had originally started 
up and initialized the virtual machine (the “main core”). 
Thus, whenever one of these foreign primitives was 
invoked, our system passed the baton back to the main core 
for the duration of that primitive.

5.3.  Summary: Contrasts with the single-core virtual 
machine
In moving from a single-core to our first manycore object 
memory:

• We introduced a level of indirection between an object 
reference and the object’s address,

• We divided up the heap into contiguously-addressed 
individual heaps sized in multiples of pages and powers 
of two,

• We distributed objects in the snapshot to each heap in a 
round-robin fashion,

• We deferred multithreading of the mutator, instead 
passing the baton from core to core,

• New objects were allocated in the heap of the core 
currently running the interpreter,

• We ensured that the active context and receiver objects 
were always local to the core running the interpreter,

• Primitives that we did not rewrite were always executed 
back on the “main” core, by passing the baton back and 
forth,

• We provided primitive operations to allow the Smalltalk-
level code to move objects from core to core,

• We provided primitives to support visualization tools in 
Smalltalk (with apologies to Heisenberg, see Figure 7),

• We implemented the simplest possible garbage collector 
in order to avoid redoing others’ research.

After implementing these ideas, it was time to find out how 
well they worked.

Figure 7. Real-time monitoring within the manycore 
Squeak environment

5.4. Evaluation of Initial Design
How often in this field does one get to return to a twenty-
year-old benchmark? In the early 1980‘s, the Smalltalk 
“Compiler Benchmark,” which runs the Smalltalk program 
that parses a method, emits bytecodes, and creates a 
method object, was the gold standard for Smalltalk 
systems. Ungar relied on it when he implemented the first 
Smalltalk system without an object table and with 32-bit 
object references , and when he evaluated the performance 
of a special-purpose RISC for Smalltalk [10]. Twenty-six 
years later,  it was time to run this benchmark again. It was 
a bit like a reunion with an old friend. 
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The Smalltalk tradition is to measure the real time elapsed 
for a benchmark, and since our TILE64 processor was only 
running our virtual machine, it seemed reasonable to follow 
that tradition.

For our tests, we could confine the virtual machine to any 
number of cores from one to 56. The other eight cores were 
running the Linux operating system device drivers in the 
configuration we were using.

5.4.1.  Mystery: double the cores, a third of the 
performance
Since our system was only running one interpreter thread at 
a time, while passing the baton among the cores, we 
expected the time taken to run the benchmark on two cores 
to be only slightly longer than the time to run the 
benchmark on one core. Instead, the time tripled going 
from single- to dual-core! Worse still,  it almost doubled 
again from two-cores to fifty-six cores. (See Figure 8.)

In order to investigate this mystery, we first tried the 
profiling facility in the Tilera Multicore Development 
Environment. The profiler output, which is based on 
hardware counters, reported overall statistics. Needing 
more detailed information,  we turned to the Tilera cycle-
accurate simulator. Since simulation was much slower than 
execution, we had to implement a checkpointing feature in 
our virtual machine,  so we ran at full speed to load in a 
snapshot, converted all of the data,  and then checkpointed 
the virtual machine state.  The simulator would then run our 
checkpoint restoration code, and proceed to the benchmark. 
Each core simulated took about twenty minutes to run our 
short benchmark,  so we focused on comparing single- to 
dual-core configurations. The very first experiment counted 
bytecode dispatches in order to verify that the dual-core 
system was not executing more Smalltalk code than the 
single-core system. The TILE64 CPU combines two or 
three instructions into a single bundle, and we also verified 
that there was no difference in bundling efficiency.

(compiler benchmark time in seconds)

1 core
2 core expected

2 core actual

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

3.31
1.43
1.3

Figure 8. Mystery: Our code  runs far slower on two 
cores than on one.

To narrow down the causes of the mysterious performance 
penalty when running dual-core, we started by 
investigating whether the unexpected overhead was caused 
by executing extra instructions, or by stalling the 
instruction pipeline more than before:

bytecodes
insts / bundle

tot. cycles (avg)
bundles

non-net stalls/bundle

0 1.0 2.0 3.0

ratio, dual-core to single-core

as expected

as expected

the mystery

instructions! should be 1.0

also problematic, should be 1.0

Figure 9. Are stalls or instructions the problem?

The extra total cycles (ratio of 2.7) confirmed that the 
simulator was running our benchmark and reproducing the 
time difference observed in the real system. The ratio of 
bundles retired was about 2.0, suggesting that the system 
was indeed executing extra instructions –  twice as many! – 
in the dual core case. We then factored out stalls caused by 
inter-core reads,  since only one core should be running at a 
time, and then compared the stalls per bundle. That ratio 
was 1.5,  suggesting that there was also a problem with less-
efficient instruction execution. Our mysterious overhead 
was caused by both instructions and stalls!

The reason for executing extra instructions was not obvious 
from the profile information, so we looked at the (non-
network) stalls:

TLB data page misses

TLB inst. page misses

L1 data cache misses

L1 inst. cache misses
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L2 data cache misses
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Figure 10. Stalls: dual- vs. single- core

Although both instruction and data stalls showed up as 
problems, when we looked at the causes of the L2 data 
stalls the mystery was solved: 
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Figure 11. Source of L2 Data Stalls

instantiateContext
intvec_TILE_TIMER

lookupMethodInDictionary
lookupMethodInClass

commonReturn
itlb_miss

internalActivateNewMethod
internalFindNewMethod

booleanCheat
internalFetchContextRegisters

intvec_INTCTRL_1
lookupMethodInDictionary

dispatch
fetchClass
dtlb_miss

invec_SWINT_1 (ioMsecs)
fetchNextBytecode

0 10 20 30 40 50

L2 data stalls (M)

1 core
tot. 2 core

(next stage)
 use “huge” pages
donʼt call ioMsecs

(next stage)

The 
largest increase in L2 data stalls was caused by the 
interpreter reading bytecodes from methods, as indicated 
by the bar for the “fetchNextBytecode” routine.  Recall that 
our heuristics ensured that the active context and receiver 
would be local, but did not consider the location of the 
method objects themselves. This was a harder problem to 
attack, so we deferred it (see section 5.5).

The second-largest increase was in a runtime routine  
(“invec_SWINT_1”) used by the real-time clock system 
call invoked from a routine in our virtual machine 
(“ioMsecs”). We had instrumented our system with code to 
track the real time and cycle count of every migration of 
the interpreter thread to another core. No wonder that when 
running on two cores, the real time clock was queried far 
more than on the single core configuration! Since the cycle 
counter was providing the same information at a much 
lower cost, we fixed this problem by simply removing the 
calls to “ioMsecs” in our instrumentation.

The third-largest increase in L2 data cache stalls occurred 
in a routine that was handling misses in the data page 
translation look-aside buffer (DTLB).  The standard TILE64 
page size is 64 KB, and each core has only 16 entries for 
data pages (eight for instruction pages), another difference 
resulting from the large number of smaller capacity cores. 
With a heap size in the range of ten megabytes, it made 
sense that there would be many of these misses. We 
attacked this problem by switching to an optional large 
page size of 16 MB, called “huge pages” in this system.

The fourth-largest increase in L2 data cache stalls occurred 
in the “fetchClass” routine. This routine is most often 
invoked when a message is sent to an object in order to 
lookup the method based on the object’s class. This issue 
was also deferred.

At this point,  we had tackled the second and third place 
culprits of L2 data cache stalls, and deferred the 1st and 4th 
place culprits. We measured the effects of the two fixes:

Figure 12. Savings w/ huge pages, no ioMsecs 

bundles
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The top group of bars measures instruction bundles retired, 
and shows that each of the two optimizations contributed 
about equally to reduce the number of instructions in the 2-
core case back to rough equality with the one-core case. 
The second group of bars reports on the stalls, and shows 
that eliminating the “ioMsec” calls was a greater effect in 
reducing these stalls. More stalls remained in the dual-core 
case even after both optimizations, but we still had several 
deferred issues yet to deal with. The third group of bars 
shows total cycles, or actual time,  and demonstrates the 
combined effect of bundles and stalls.

Returning to the world of real execution on hardware in 
real time, we measured the time to run the compiler 
benchmark. The optimizations we had implemented 
improved single-core performance as well as the other 
cases.

Much, though not all of the mystery had been solved: After 
fixing these two problems, the two-core vs. one-core ratio 
improved from about a factor of 3 to a factor of 1.7:

1 core

2 cores

56 cores

Before
After

Before
After

Before
After

0 ms 1500 ms 3000 ms
Figure 13. Effect of using huge pages and eliminating

   ioMsec calls

Returning to the TILE64 simulator, we took another look at 
stalls given our optimizations. (See Figure 14.) The three 
greatest sources of stalls for our current two-core system 
were L2 data, L1 instruction, and L2 instruction (TLB 
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miss, Napping and L2 busy stalls were insignificant and 
thus elided from the chart).  At this point, we could have 
gone after L1 instruction stalls, but those were not relevant 
to the extra cores.  Instead, it was the L2 data stalls which 
increased the most with the addition of a second core:

Figure 14. Stalls before and after

1 core before

1 core after

2 core before

2 core after

0 100 200 300 400 500 600

M Stalls

L1 D
L1 I
L2 D
L2 I
Pipeline
Branches

The simulator had pointed us to fetching bytecodes out of 
methods as a prime cause of these stalls.  Since Smalltalk 
method objects are immutable, we started wondering if 
there were not some way to allow the hardware to replicate 
these and other immutable or even rarely-written objects 
(e.g. classes) among the cores as needed. It was time to 
tackle the previously deferred issues.

5.5. The Read-Mostly Heap
Many systems contain objects that are read far more 
frequently than written. In Smalltalk/Squeak, the currently 
executing method is read for every bytecode and literal 
interpreted, but it is never written; the class of a message 
receiver is read for every method lookup, but only written 
when a class-instance variable is changed (class 
modifications are performed with a copy-on-write scheme); 
and a class’s method dictionary is read for every method 
lookup, but only changed when a method is added, 
modified, or removed. In addition, many application-level 
objects exhibit periods in which reads vastly outnumber 
writes. For instance, a Smalltalk Point object has its x and y 
variables set upon initialization and is almost never 
mutated thereafter. 

Replication can save time if the read frequency far exceeds 
the write frequency. Although the default caching regime 
for user data on the TILE64 platform maintains coherency 
by confining  the set of cores that may cache a line to a 
single core, there is an alternative: a user-managed regime. 
When a page is operating under this regime, any cache line  
may be cached on as many cores as needed. However, 
unlike a processor with a handful of cores providing 
memory coherence in hardware, the time savings accrued 

when reading data residing in a local cache must be paid 
for with a substantial increase in the time required to 
modify the data. In order to modify a user-managed cache 
line, the application must first force every other core to 
invalidate any cached copies of the data, then must write 
the data, and finally must force the cache line out to main 
memory before any other core attempts to read the data. 
Consequently, the user-managed memory policy optimizes 
reads at a great cost in both time and complexity for writes. 
Tables 2 and 3 compare read and write operations for the 
two regimes. 

5.5.1.  Read-Only, or Read-Mostly
If write operations are to be expensive and complicated, 
perhaps only immutable objects such as compiled methods 
should be placed in user-managed memory. Such a design 
would simplify our system at the cost of missing 
opportunities to replicate other objects such as classes and 
method dictionaries. If our system were to allow these 
read-mostly objects to occupy user-managed memory, a 
store barrier would be required in order to instruct the other 
cores to invalidate a line before a given core performed a 
store to it. A decision had to made that would trade off 
performance against simplicity.

read

write

user-managed regime

2 cycles if in L1, 8 cycles if in L2

1. other tiles must invalidate the cache line,
2. storing tile stores the data,
3. storing tile flushes the line,
4. storing tile and performs a fence operation

Table 2. The TILE64 User-Managed Regime

read-wriite regimeread-wriite regimeread-wriite regime

home time non-home tile

read

write

2 cycles if in L1,
8 cycles if in L2

~ 40 cycles if in home L2,
~ 80 cycles if in memory

hardware does it hardware does it

Table 3. The TILE64 Read-Write Regime

Sometimes it’s easy; we discovered that even without a 
store barrier, the compiler benchmark would run with all 
(non-context) objects placed in read-mostly memory,  a 
fortuitous and fortunate happenstance that perhaps sheds 
light on the difference between benchmarks and real 
workloads. So, we performed a quick-and-dirty 
experiment:  We ran the benchmark on one, two, and 56 
cores, with no replication (all objects in read-write 
memory), method-only replication,  and universal 
replication:
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Figure 15. Quick & Dirty Experiments / no coherence code
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T h e 
first set of bars shows the system without replication: The 
two core configuration was perhaps 1.5 times slower than 
the single-core, and the 56 core configuration is between 
two and three times slower. The second set of bars showed 
the results for employing the user-managed policy for 
methods only: Surprisingly, there was little improvement. 
Applying the user-managed policy to all objects showed 
much better scalability. This experiment convinced us to 
shoulder the burden of a store barrier in order to apply the 
user-managed regime to such read-mostly objects.

5.5.2. Incorporating User-Managed Memory
Our first design to incorporate user-managed memory 
added another heap, dubbed the “read-mostly heap” to our 
memory system:1

Read-

Mostly 

Heap
Object 

Heap

Object 

Heap

R/W Heap

addr

OBJ

OOP

Bytecode

Interpreter

Bytecode

Interpreter

Object 

Table
Bytecode

Interpreter

one/core one/coreglobal

OBJ

REF

OOP

OBJ

addr

cached

addr

global

... ...

Figure 16. Adding a global read-mostly heap

A store barrier intercepts writes to objects and performs the 
extra work to ensure coherence if the object resides in this 
read-mostly heap. For virtual-machine-level operations that 
modify objects in bulk, such as garbage collection, the 
extra coherency-preserving work is performed once for the 
whole read-mostly heap. This mechanism would have been 
more difficult had we also been tackling application-level 
multithreading: What happens if every core decides to 
simultaneously ask every other core to invalidate a cache 
line? That question is reserved for the future.

With this addition of the read-mostly heap the baton-
passing algorithm became slightly more elaborate: If the 
receiver of a message-send is in the read-mostly heap, the 

baton need never be passed, since any core is as good as 
any other.

Our design had to include policies and mechanisms to 
attempt to put the appropriate objects in the read-mostly 
heap. New objects and contexts were assumed to exhibit a 
high mutation frequency for initialization and 
interpretation, and were thus allocated in the read-write 
heap. In fact, contexts were never allowed in the read-
mostly heap. 

Upon performing a store into any object residing in the 
read-mostly heap, the virtual machine would move the 
object to the read-write heap in order to forestall 
catastrophic performance degradation in case a series of 
stores were about to be performed on that object.

As it seemed too burdensome to automatically discover 
objects that had not been modified for a while, the 
responsibility for moving a new object into the read-mostly 
heap was placed on the application by providing primitive 
operations that would move either one or all (non-context) 
objects to the read-mostly heap. We assumed that the 
application code would periodically move everything to the 
read-mostly heap and let the virtual machine weed out the 
mutations, and/or initialization methods would be 
augmented to move the newly initialized instance into the 
read-mostly heap. An object read from the snapshot was 
assumed to be stable and placed into the read-mostly heap 
(see figure 17).

When we measured this system, the numbers looked too 
good—the dual core time was only 1.1 times as slow as the 
single core—and we realized that the baton was almost 
never getting passed! Since most objects were in the single 
read-mostly heap there was rarely a need to move the 
mutator thread. This problem was remedied by splitting up 
the global read-mostly heap into per-core pieces (powers of 
two in size) so that, even though it made no difference to 
the hardware, our system could use an object’s address as a 
means to indicate which core should run the interpreter 
when sending a message to that object. In addition, we 
added a per-object flag to disable baton-passing in order to 
retain the older behavior when desired.  Figure 18 shows the 
revised baton-passing algorithm, where “wants baton” 
means “does not have the don’t-pass bit set.”




1 Actually, we initially named this heap the “incoherent” heap, but nobody understood what we were talking about. Our thanks go to David 
Bacon for pointing out the obscurity of that nomenclature.
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Figure 18. Final baton passing algorithm

Conclusions and Future Work
In adapting a large, centralized heap of many small objects 
to a collection of heaps distributed over a multiplicity of 
medium-sized caches, our design evolved in stages. 
Starting with a reference implementation, we

• introduced distinct types for references vs. addresses, 

• shared the address space across all cores to facilitate 
inter-core object references,

• added an object table to support object migration,

• used ordinary objects for activation records to facilitate 
thread migration,

• separated the global object heap into per-core heaps,

• enforced locality for receiver and activation record 
access by passing the baton to the receiver’s core when 
invoking a virtual function and by allocating the 
activation record on the same core as the receiver, 

• added a global heap with user-managed caching in order 
to replicate read-mostly objects,

• implemented a store barrier in order to maintain 
coherence for the read-mostly heap, and

• separated the global read-mostly heaps into per-core 
heaps.

Each stage ideally followed a sequence of design and 
implementation, measurement, interpretation and 
evaluation, optimization, and again, measurement.  Even 
without parallel workloads, efficiency has been a challenge 
at every stage. Because the overall goal of the project was 
the programming model, and given budget constraints, we 
did not get every answer we wanted before moving on.

What lessons can we learn?  One obvious but important 
lesson is that manycore systems are very different 
platforms, offering far faster communication than 
distributed systems, far smaller caches and TLBs than 
modern few-core systems, easier address-space sharing 
than distributed systems, but more problematic cache 
coherency than few-core systems. This last issue is widely 
recognized as a major challenge in designing and 
exploiting manycore architectures. For example, Tilera 
further addresses cache coherency in their second-
generation chip, the TILEPro64 [22]. 

With a manycore hardware architecture, the virtual 
machine designer faces different trade-offs than with 
traditional architectures. For example, migrating objects to 
achieve locality takes less time than on a distributed 
system, yet saves much more time than on a few-core 
system. We observed a bit of this difference when we 
implemented the read-mostly heap and allowed many 
objects to be not only migrated to where they were needed, 
but replicated as well.
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Now that we have a stable manycore object memory 
model, our focus has shifted to implementing application-
level multithreading to complete our experimental platform 
for prototyping programming paradigms and concepts.  We 
will revisit optimization when our system is running 
parallel workloads.
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