
Hosting an Object Heap on Manycore Hardware:
An Exploration

David Ungar
IBM Research

dungar@us.ibm.com

Sam S. Adams
IBM Research

ssadams@us.ibm.com

Abstract
In order to construct a test-bed for investigating new
programming paradigms for future “manycore” systems
(i.e. those with at least a thousand cores), we are building a
Smalltalk virtual machine that attempts to efficiently use a
collection of 56-on-chip caches of 64KB each to host a
multi-megabyte object heap. In addition to the cost of inter-
core communication, two hardware characteristics
influenced our design: the absence of hardware-provided
cache-coherence, and the inability to move a single object
from one core’s cache to another’s without changing its
address. Our design relies on an object table, and the
exploitation of a user-managed caching regime for read-
mostly objects. At almost every stage of our process, we
obtained measurements in order to guide the evolution of
our system.

The architecture and performance characteristics of a
manycore platform confound old intuitions by deviating
from both traditional multicore systems and from
distributed systems. The implementor confronts a wide
variety of design choices, such as when to share address
space, when to share memory as opposed to sending a
message, and how to eke out the most performance from a
memory system that is far more tightly integrated than a
distributed system yet far less centralized than in a several-
core system. Our system is far from complete, let alone
optimal, but our experiences have helped us develop new
intuitions needed to rise to the manycore software
challenge.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors - interpreters, memory management
(garbage collection), Run-time environments: D.3.3
[Programming Languages]: Language Constructs and Features -
Dynamic storage management, Concurrent programming
structures : D.4.2 [Operating Systems]: Storage Management -
Allocation/deallocation strategies: C.1.2 [Processor

Architectures]: Multiple Data Stream Architectures
(Multiprocessors) - Multiple-instruction-stream, multiple-data-
stream processors (MIMD): C.4 [Performance of Systems]:
Design studies, Measurement techniques: C.3.2 [Memory
Structures]: Design styles - Cache memories.

General Terms Design, Experimentation, Performance,
Measurement.

Keywords manycore, object heap, virtual machine, Smalltalk,
Squeak, object table, cache performance

1. Introduction
The microprocessor industry’s transition from single core
to multicore to manycore single chip multiprocessors poses
an epochal challenge to the software industry. How can
software applications reap continuing performance benefits
from these disruptive improvements in hardware
technology when most existing programming models and
languages have co-evolved in the single core uniprocessor
era? Despite decades of advances in computer science,
programming parallel systems remains beyond the reach of
all but a tiny handful of the world’s software developers.
From petaflop computers with over one million cores like
BlueGene/P™ [1], to Graphics Processing Units (GPUs)
with hundreds of shader cores to the 9 core Cell/B.E.™ [2]
in Playstation3™, programmability is widely recognized as
a significant challenge.

The Renaissance project at IBM Research was chartered in
2008 as an exploratory research effort to take a clean-slate
approach to finding a programming model suitable for the
following twin challenges: how to fully exploit the massive
parallelism of future manycore hardware in a manner that
will also be accessible to the majority of today’s
“productivity programmers.” We chose a two-pronged
approach for this project, hardware-up and application-
down. For hardware, we targeted a future hypothetical
1000-core heterogenous multiprocessor with a large
majority of identical, general purpose cores. We are
prototyping this system using 16 TILE64™ manycore
processors from Tilera [3], each supporting 64 RISC-based
processor cores. From the application perspective, we
selected virtual world physics simulation to represent the
class of large scale distributed relaxation problems we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DLS '09, October 26, 2009, Orlando, FL, USA.
Copyright © 2009 ACM 978-1-60558-769-1/09/10…$10.00

99

believe will finally be commercially feasible on future
manycore systems.

We selected the Squeak Smalltalk system [4] as a software
substrate for our investigations. As a widely ported open
source virtual machine, class library and full development
environment, Squeak was one of the most flexible systems
available. The authors’ extensive experience in Smalltalk
virtual machine design, application development and
programmer education was a big plus, and the tiny size of
the system relative to alternatives like commercial Java
systems was a good fit for the smaller, relatively slow and
cache-starved cores of our chosen hardware.

Having selected our hardware and software starting points,
the next step was to port the existing Squeak Smalltalk
virtual machine to a single TILE64 manycore processor
and rewrite it to function in parallel on the 56 cores
available for user programs. (The other 8 cores were
running the Linux operating system device drivers in the
configuration we were using.)

In moving from a single-core Squeak virtual machine, to a
56-core system, we decided to tackle the memory system
first, and save application-level parallelism for a
subsequent effort. The memory system can be further
subdivided into support for reclaiming unused memory
(garbage collection), and support for creating, accessing,
and modifying objects (the mutator). While garbage
collection presents an interesting challenge for this system,
we focused on the mutator portion of the memory system
and deferred advanced work on the collector.

This paper describes:

• a series of experiments we undertook to figure out how
to host an object heap on manycore hardware,

• the evolution of the resulting design, and

• its effectiveness at overcoming the performance penalty
of dispersing the heap over a large number of small
caches.

The roadmap for this paper is as follows: We first discuss
multiprocessor Smalltalk/Java systems, then overview our
chosen hardware and software platforms, and finally
describe our efforts to implement a manycore object heap
in detail.

2. Related Work: Multiprocessor Smalltalk/Java
Systems

Space limitations force us to omit discussion of much
important work, especially in the areas of scientific
computing, distributed systems, ultra-large systems, and
even related manycore systems.

MS was, as far as we know, the first system to run a
Smalltalk or Java-like system on a multiprocessor [5, 6].
The hardware was a five-processor DEC Firefly, a machine
with five MicroVAX processors and 16 Mb of shared
memory, with a per CPU cache of 16 Kb, and hardware

support for cache coherency [7]. The virtual machine was
an interpreter, based on Berkeley Smalltalk [8] and the
memory system was based on a later version of Berkeley
Smalltalk that incorporated Generation Scavenging and
eliminated indirection (via an object table) for object
references [9, 10].

The J-machine was a distributed system built in
anticipation of high levels of on-chip integration [11]. It ran
a language called Concurrent Smalltalk, a class-based
language with some static typing, parallel execution
semantics, and a Scheme-like syntax [12]. It used an object
table (called a BRAT), but rather than putting that table in
globally-accessible memory, it relied on sending messages
to an object’s “home” processor in order to find the object.

The Mushroom system was a multiprocessor designed for
Smalltalk [13, 14]. Its memory system hardware mapped
virtual to physical addresses at a fine granularity. This
design permitted the runtime system to move an object
around in physical memory without paying a speed penalty
for address translation [15]. The Mushroom memory
architecture was the inspiration for our choice to employ an
object table as a means to move an object from core to
core. Unlike Mushroom, our mutator must pay a time
penalty as the address translation is performed by software.

3. The TILE64 Manycore Processor
The TILE64 processor, based on the Raw machine project
at MIT [16], may well portend manycore computer
architectures to come. Containing a grid of 64 RISCs, its
design emphasizes scalability. Each tile includes a network
processor in addition to the instruction processor.

The designers of manycore processors must trade off the
number of cores against the amount of memory local to
each core. As the local memory size increases, the area
occupied by each core increases, and given a constraint on
the size of the die the number of cores decreases. We
believe that future manycore processors may likely have far
less per-core memory than today’s multicore CPUs. The
TILE64 processor seems like a harbinger of things to come
in this respect as well, albeit perhaps an extreme data-point.

As Table 1 shows, each Tilera core possesses a mere 64 KB
of local memory (known as the L2 cache), and a remote
(inter-tile, or main memory) access will require a wait of at
least 35 cycles. If you are old enough, you might think of
this chip as a miniature roomful of incredibly fast
PDP-11’s. The last column in Table 1 illustrates the
criticality of cache hit rates by estimating the MIPS that
would result from code with extremely poor caching
behavior.

In concert with the hardware itself, Tilera provides an
extensive environment to support software development for
the TILE64: The Tilera Multicore Development
Environment [17], or MDE, provides numerous command-
line and Eclipse-based tools for developing, debugging,
and profiling manycore applications.

100

condition cache
size,
bytes

miss
penalty,
cycles

line
size,
bytes

worst case
MIPS

equivalent

max 0 600 - 1800

branch
mis-predict

2 250

data in L1 8 KbI, 8
KbD

2 16 b 250

miss L1,
hit L2

64 Kb 8 64 b 80

miss L2,
hit L3

4 Mb 35–49 64 b 20

miss L3 4 Gb 69–88 10

Table 1. TILE64 cache characteristics

The TILE64 was originally targeted toward streamed video
compression, packet filtering and other network
applications. Our project, on the other hand, explores how
to run general-purpose object-oriented programs on such an
architecture. Since such a system relies on a heap of
interconnected objects ranging from a few to hundreds of
mega-bytes, we believe that minimizing the overhead of
dispersing such a heap across a myriad of cores will be
critical to obtaining reasonable performance. In this paper,
we report on our experiences in addressing this problem.

4. Squeak
Our work is based on the Squeak open source Smalltalk
system [18]. This system includes support for the Smalltalk
programming language, an integrated development
environment (IDE), and a virtual machine based on a
bytecode interpreter. The language includes features such
as user-defined control structures and operator overloading
that will help us explore new parallel programming
paradigms. The IDE is tuned toward an exploratory style of
programming that will also expedite our research and foster
creativity. Since the Squeak system is self-hosting, i.e. the
tools and environment are written in Smalltalk, every time
we use the environment we are testing our virtual machine.

In addition, Smalltalk’s age yields another benefit: The
older of its two user interface frameworks (known as MVC,
the o r ig ina l implementa t ion o f Mode l -View-
Controller [19-21]) was originally designed in the late
1970’s, long before the age of gigabyte memories and
gigahertz processors. As a result, it reflects compromises
between generality and efficiency that permit a machine
that ran almost impossibly slow by 2009 standards (a
2 MB Macintosh Plus from 1986, for instance) to provide a
good interactive graphical experience while running in an
interpreted language. By contrast, newer systems built for

languages such as Java have expanded to consume the
bountiful resources of modern pre-manycore hardware.

Of all of Squeak’s components, its virtual machine is most
central to this effort. As a result of the optimizations
developed by the original Smalltalk implementors [18], a
virtual image containing the full IDE, two user interface
frameworks, a generous class library (both source code and
compiled methods) and a plethora of auxiliary tools fits in
16 MB, and a stripped-down image containing a fully-
functional IDE and class library can fit in as little as
1.7 MB. These numbers are dwarfed by today’s mainstream
Eclipse environments and Java heaps. By using Smalltalk,
we get to simulate a future of larger (mainstream) heaps
running on a manycore processor with larger per-core
memories.

Smalltalk’s memory efficiency partly results from its
reliance on a bytecode interpreter for execution, rather than
a (dynamic) compiler. Future manycore object-oriented
virtual machines may well rely on compilation, but for our
work, we elected to save both implementation effort and
possibly cache misses by sticking with an interpreter. As it
turned out, misses in the instruction cache still accounted
for a substantial number of stalls (see section 5.4). Readers
who wish to use our results in guiding their own
compilation-based designs will have to account for the
consequences of a different execution mechanism.

The Squeak virtual machine represents activation records
(“contexts”) by ordinary Smalltalk objects. The currently
executing context is called the “active context.” Squeak
also implements multiple, cooperatively-scheduled threads
that all run in the same object heap. Although the use of
contexts often adds overhead to calls and returns when
compared to using frames on a stack, we felt that the
potential ease of thread migration via simply migrating
context objects outweighed the performance penalty. Our
virtual machine therefore follows the classic Squeak/
Smalltalk model by using context objects for its activation
records.

Although we benefited from the current design of the
Squeak virtual machine, we knew that the memory system
would be substantially different and hence, guided by the
reference implementation, rewrote it and the bytecode
interpreter. We reused the existing code for some
primitives, including the graphics operations, that were
written in C in the original Squeak system. In our rewritten
portions, we used the C++ static type system to ensure that
object references were not conflated with object addresses.
The rest of the paper explains the changes we made and our
experience with them.

5. Our Experience
Upon the arrival of our Tilera processors and host
computers, we undertook to gain insight into our platform
and then port Squeak to it.

101

5.1. TILE64 Measurements and Characteristics
In order to guide our efforts, we undertook to measure the
performance of various operations on the TILE64
processor. Our measurements used the cycle counter of the
processor. (We believe that there is an uncertainty of a
cycle or two, stemming from the details of instruction
execution.) The measurements confirmed Tilera’s figures
about the relative speeds of the three levels of channel-
based messages: raw, streaming, and buffered. As expected,
raw messages were the fastest, taking twenty-three cycles
to send, and twelve to receive a 10-word message.

5.1.1. Communication via the Memory System
In addition to messaging, the TILE64 processor supports
direct-memory-access (DMA) between main memory and
cache, or between different tiles’ caches. DMA provides the
benefit of parallel data transfer and instruction execution.
We compared the time (in cycles) for various DMA
operations with simple instruction loops to transfer data.
When transferring data from one tile to another, we
measured two distances: adjacent tiles (i.e. one hop), and
tiles separated by two intervening tiles (i.e. three hops):

Figure 1. TILE64 data movement times (cycles)

1 hop message
3 hop message

load from 3-hop cache
load from memory

DMA from 3-hop cache
DMA from memory

1 hop message
3 hop message

load from 3-hop cache
load from memory

DMA from 3-hop cache
DMA from memory

0 200 400 600 800 1,000

1 word
moved

10 words
moved

A s
expected, hops added time, and DMA transfers were
uneconomical for 10-word messages. Perhaps surprisingly
to those who, like us, are new to manycore systems, raw
channel messages transferred data faster than executing
load/store instructions. The bottom line is that for short
transfers, programmed message-passing saves time
compared to either programmed- or direct- memory access.

Space limitations preclude further discussion, but our
results agreed with the information provided by Tilera.

5.1.2. Homing
It was clear at this point that, as expected, object location
would be critical thus we assumed that the virtual machine
would need to be able to relocate an object from one core
to another. Therefore, we needed to understand the caching
policies for our hardware. The TILE64 processor supports
three caching regimes:

• Read-only data may be cached on any tile, as needed.

• Read-write data may only be cached on one specific tile,
determined by the page containing the data. If read or
written by another tile, each word imposes a latency of

about 35 cycles plus 2 cycles per hop. The caching tile is
called the “home” tile, and this mechanism is called
“homing.”

• User-managed data may be cached on multiple tiles, but
before performing a store instruction, all other tiles must
invalidate cache lines for the data, and after performing
the store, the storing tile must force the cache line out to
main memory.

5.1.3. Hardware vs. Software Memory Management
As we thought about the application of the TILE64
architecture to the problem of hosting a heap of objects, we
realized something that had a profound effect on the design
of our virtual machine’s memory system. Our IBM
colleagues David Bacon and David Grove, both expert in
Java virtual machines, reminded us that for the sake of
efficiency it was best to get the hardware to do as much
work as possible. That led us to the decision to let the
hardware fill and flush the cache on each core, rather than
use software to intervene. As a consequence, we employed
the read-write mode, a decision we would later revisit.
Thus, we planned to divide the objects up into N
contiguous spaces (which we perhaps confusingly called
“heaps”), one per core, and let the hardware control the
movement of data from heaps in main memory to caches.

We also wanted to be able to relocate an object from one
core to another, in the hope that we could minimize access
time by maximizing locality. This relocation requirement
meant that we would need to change the assignment of an
object to a cache. However, in read-write mode, the
TILE64 assigns all data in a given page to the same core.
Since the average object at 44 bytes is far smaller than the
smallest page at 64 KB, and given the scarcity of
translation look-aside buffer (TLB) entries, it would not
have been practical to relocate an individual object to
another core without software intervention.

5.1.4. Summary of Critical TILE64 Characteristics
Putting it all together:

• Accessing an object that is not cached locally takes a lot
of time.

• Local memory is a critical resource.

• The most efficient method for moving an object or
performing a remote procedure call employs raw
channels to pass messages.

• Raw channels require the software to perform flow
control.

• Scanning the local cache is prohibitively expensive.

• The minimum page size of the TILE64 hardware
combined with the number of TLB entries rule out
hardware-based object location management. Subsequent
designs for Tilera manycore processors have tackled this
problem [22].

102

With these lessons in mind, we set about our initial design
for the memory system.

5.2. Basic Memory System Design
The standard Squeak system featured direct pointers; an
object reference was the same as its address:

Object HeapBytecode

Interpreter

OBJ

REF

addr addr

OBJ

OBJ

Figure 2. Direct object pointers

Given that object location is critical, and given the lack of
hardware support for object-granularity homing, we
decided to travel back in time to 1980 and implement an
object table:

Object

Table
Object HeapBytecode

Interpreter

OBJ

REF

addr

OOP OBJ

OBJ

addr
OOP

cached

addr

Figure 3. Object Table

An object reference is the address of an Object Table Entry
(OTE), which in turn contains the address of the object.
This indirection through the object table permits our system
to move an object to a different core by first copying the
contents of the object to another page and then updating its
OTE. In order to be able to find an object’s OTE from the
object, we also added a backpointer word to the object’s
header.

There are disadvantages to this scheme: while moving an
object other cores may not write to the object; object
reference traversals are slower; there is no good single
place in which to cache the object table; object table entries
must be reclaimed; object table compaction is problematic;
and there is a 10% space penalty for the extra header word.
The drawbacks were outweighed by this scheme’s ease of
implementation, which allowed us to experiment with
dynamic object relocation earlier than other alternatives.

Wanting to let the hardware do as much as possible, we
divided the object space into multiple heaps, one heap per
core. Each heap was the same size, a power of two, as well
as an integral number of pages. This constraint optimized
the computation of the home rank of an object from its
address. Each heap was described by a “Heap” data
structure containing a start, a next-free, and an end pointer.
Each heap, along with its associated “Heap” structure was
homed to its owning core. We used a shared address space

so that any core could access any object in any heap, or any
“Heap” structure:

Object Heap
Object Heap

Bytecode

Interpreter

Bytecode

Interpreter

...

Object

Table
Object HeapBytecode

Interpreter

one per core one per coreglobal

OBJ

REF

addr

OOP OBJ

OBJ

addr

OOP

cached

addr

...

Figure 4. Multiple interpreters, global Object Table, multiple heaps

Throughout this project we found ourselves juggling
decisions about shared vs. private memory, shared vs.
private addresses, and homing considerations. These sorts
of design decisions seem to be a characteristic of the
manycore world, in which the costs of sharing significantly
exceed those of the current few-core processors, yet remain
economical in many cases, unlike the world of distributed
systems.

A Smalltalk virtual machine reads in a large number of
objects from a binary file, called a “snapshot,” at startup
time. Our system distributed these objects to the various
heaps in round-robin fashion, like a dealer dispensing
cards. After reading in these objects, the interpreter
commenced execution. During execution, when a core
allocated an object, it placed it in its own heap. Thus, the
store operations required to update the “Heap” structure
and to initialize the object were local.

In order to find the Heap structures, each core had its own
(immutable) array of pointers to them:

Heap 3

Heap 3
Heap 3

Heap 3

Heap 2

Heap 1

heaps

array start

endheaps

array

Heap Memory

...

next free

...

one/core globalone/core

heaps

array

...

1

2

3

4

5

...

56

56

Heap 1

Memory

Heap 2

Memory

Figure 5. Heap Array and Heap Memory Layout

Heap 3

Memory

Heap 56

Memory

In this phase of our project, we wanted to optimize memory
accesses while deferring work on application-level
multithreading. Therefore, we chose to implement an
interpreter with only a single thread and to have that thread
hop around from core to core in order to optimize memory
references to objects. (In Smalltalk, “sending a message” to
an object is equivalent to a virtual function call in other

103

languages.) We expected the most frequently accessed
objects to be the active context and the message receiver.
So, in order to maximize locality:

• When sending a message to an object the new active
context was allocated on the same core as the receiver’s
home.

• On every call or return the interpreter thread hopped to
the core hosting the receiver object of that activation.

Consequently, references to the receiver and active context
were always local to the core running the interpreter. We
called this thread hopping “passing the baton” from core to
core. The simple algorithm shown below later increased in
complexity as our design evolved:

call or return

Is receiver a

SmallInteger?

move thread to

receiver's core
continue on this core

yes

no

Figure 6. Basic baton passing algorithm

Although these mechanisms ensured local accesses for the
receiver and active context, accesses to other objects,
including message arguments would likely be remote, i.e.
require communication with other cores’ caches or main
memory. Our virtual machine used the memory system for
these, although messaging could potentially have been
faster. When we eventually run multithreaded applications
the memory system may be the more efficient option.

Recall that we reused existing C code for primitive
operations such as graphics and file operations. In general,
this code depended on local state, so it was necessary to run
these primitives on the same core that had originally started
up and initialized the virtual machine (the “main core”).
Thus, whenever one of these foreign primitives was
invoked, our system passed the baton back to the main core
for the duration of that primitive.

5.3. Summary: Contrasts with the single-core virtual
machine
In moving from a single-core to our first manycore object
memory:

• We introduced a level of indirection between an object
reference and the object’s address,

• We divided up the heap into contiguously-addressed
individual heaps sized in multiples of pages and powers
of two,

• We distributed objects in the snapshot to each heap in a
round-robin fashion,

• We deferred multithreading of the mutator, instead
passing the baton from core to core,

• New objects were allocated in the heap of the core
currently running the interpreter,

• We ensured that the active context and receiver objects
were always local to the core running the interpreter,

• Primitives that we did not rewrite were always executed
back on the “main” core, by passing the baton back and
forth,

• We provided primitive operations to allow the Smalltalk-
level code to move objects from core to core,

• We provided primitives to support visualization tools in
Smalltalk (with apologies to Heisenberg, see Figure 7),

• We implemented the simplest possible garbage collector
in order to avoid redoing others’ research.

After implementing these ideas, it was time to find out how
well they worked.

Figure 7. Real-time monitoring within the manycore
Squeak environment

5.4. Evaluation of Initial Design
How often in this field does one get to return to a twenty-
year-old benchmark? In the early 1980‘s, the Smalltalk
“Compiler Benchmark,” which runs the Smalltalk program
that parses a method, emits bytecodes, and creates a
method object, was the gold standard for Smalltalk
systems. Ungar relied on it when he implemented the first
Smalltalk system without an object table and with 32-bit
object references , and when he evaluated the performance
of a special-purpose RISC for Smalltalk [10]. Twenty-six
years later, it was time to run this benchmark again. It was
a bit like a reunion with an old friend.

104

The Smalltalk tradition is to measure the real time elapsed
for a benchmark, and since our TILE64 processor was only
running our virtual machine, it seemed reasonable to follow
that tradition.

For our tests, we could confine the virtual machine to any
number of cores from one to 56. The other eight cores were
running the Linux operating system device drivers in the
configuration we were using.

5.4.1. Mystery: double the cores, a third of the
performance
Since our system was only running one interpreter thread at
a time, while passing the baton among the cores, we
expected the time taken to run the benchmark on two cores
to be only slightly longer than the time to run the
benchmark on one core. Instead, the time tripled going
from single- to dual-core! Worse still, it almost doubled
again from two-cores to fifty-six cores. (See Figure 8.)

In order to investigate this mystery, we first tried the
profiling facility in the Tilera Multicore Development
Environment. The profiler output, which is based on
hardware counters, reported overall statistics. Needing
more detailed information, we turned to the Tilera cycle-
accurate simulator. Since simulation was much slower than
execution, we had to implement a checkpointing feature in
our virtual machine, so we ran at full speed to load in a
snapshot, converted all of the data, and then checkpointed
the virtual machine state. The simulator would then run our
checkpoint restoration code, and proceed to the benchmark.
Each core simulated took about twenty minutes to run our
short benchmark, so we focused on comparing single- to
dual-core configurations. The very first experiment counted
bytecode dispatches in order to verify that the dual-core
system was not executing more Smalltalk code than the
single-core system. The TILE64 CPU combines two or
three instructions into a single bundle, and we also verified
that there was no difference in bundling efficiency.

(compiler benchmark time in seconds)

1 core
2 core expected

2 core actual

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

3.31
1.43
1.3

Figure 8. Mystery: Our code runs far slower on two
cores than on one.

To narrow down the causes of the mysterious performance
penalty when running dual-core, we started by
investigating whether the unexpected overhead was caused
by executing extra instructions, or by stalling the
instruction pipeline more than before:

bytecodes
insts / bundle

tot. cycles (avg)
bundles

non-net stalls/bundle

0 1.0 2.0 3.0

ratio, dual-core to single-core

as expected

as expected

the mystery

instructions! should be 1.0

also problematic, should be 1.0

Figure 9. Are stalls or instructions the problem?

The extra total cycles (ratio of 2.7) confirmed that the
simulator was running our benchmark and reproducing the
time difference observed in the real system. The ratio of
bundles retired was about 2.0, suggesting that the system
was indeed executing extra instructions – twice as many! –
in the dual core case. We then factored out stalls caused by
inter-core reads, since only one core should be running at a
time, and then compared the stalls per bundle. That ratio
was 1.5, suggesting that there was also a problem with less-
efficient instruction execution. Our mysterious overhead
was caused by both instructions and stalls!

The reason for executing extra instructions was not obvious
from the profile information, so we looked at the (non-
network) stalls:

TLB data page misses

TLB inst. page misses

L1 data cache misses

L1 inst. cache misses

L2 cache busy stalls

L2 data cache misses

L2 inst. cache misses

Napping stalls

Pipeline stalls

0

10
0

20
0

30
0

40
0

50
0

60
0

Stalls (M)

1 core
tot. 2 cores

Figure 10. Stalls: dual- vs. single- core

Although both instruction and data stalls showed up as
problems, when we looked at the causes of the L2 data
stalls the mystery was solved:

105

Figure 11. Source of L2 Data Stalls

instantiateContext
intvec_TILE_TIMER

lookupMethodInDictionary
lookupMethodInClass

commonReturn
itlb_miss

internalActivateNewMethod
internalFindNewMethod

booleanCheat
internalFetchContextRegisters

intvec_INTCTRL_1
lookupMethodInDictionary

dispatch
fetchClass
dtlb_miss

invec_SWINT_1 (ioMsecs)
fetchNextBytecode

0 10 20 30 40 50

L2 data stalls (M)

1 core
tot. 2 core

(next stage)
 use “huge” pages
donʼt call ioMsecs

(next stage)

The
largest increase in L2 data stalls was caused by the
interpreter reading bytecodes from methods, as indicated
by the bar for the “fetchNextBytecode” routine. Recall that
our heuristics ensured that the active context and receiver
would be local, but did not consider the location of the
method objects themselves. This was a harder problem to
attack, so we deferred it (see section 5.5).

The second-largest increase was in a runtime routine
(“invec_SWINT_1”) used by the real-time clock system
call invoked from a routine in our virtual machine
(“ioMsecs”). We had instrumented our system with code to
track the real time and cycle count of every migration of
the interpreter thread to another core. No wonder that when
running on two cores, the real time clock was queried far
more than on the single core configuration! Since the cycle
counter was providing the same information at a much
lower cost, we fixed this problem by simply removing the
calls to “ioMsecs” in our instrumentation.

The third-largest increase in L2 data cache stalls occurred
in a routine that was handling misses in the data page
translation look-aside buffer (DTLB). The standard TILE64
page size is 64 KB, and each core has only 16 entries for
data pages (eight for instruction pages), another difference
resulting from the large number of smaller capacity cores.
With a heap size in the range of ten megabytes, it made
sense that there would be many of these misses. We
attacked this problem by switching to an optional large
page size of 16 MB, called “huge pages” in this system.

The fourth-largest increase in L2 data cache stalls occurred
in the “fetchClass” routine. This routine is most often
invoked when a message is sent to an object in order to
lookup the method based on the object’s class. This issue
was also deferred.

At this point, we had tackled the second and third place
culprits of L2 data cache stalls, and deferred the 1st and 4th
place culprits. We measured the effects of the two fixes:

Figure 12. Savings w/ huge pages, no ioMsecs

bundles

Non-net stalls

cycles

0 0.5 1.0 1.5 2.0 2.5

Giga cycles

1 core
2 core
huge pages
huge pgs,no ioMsec

The top group of bars measures instruction bundles retired,
and shows that each of the two optimizations contributed
about equally to reduce the number of instructions in the 2-
core case back to rough equality with the one-core case.
The second group of bars reports on the stalls, and shows
that eliminating the “ioMsec” calls was a greater effect in
reducing these stalls. More stalls remained in the dual-core
case even after both optimizations, but we still had several
deferred issues yet to deal with. The third group of bars
shows total cycles, or actual time, and demonstrates the
combined effect of bundles and stalls.

Returning to the world of real execution on hardware in
real time, we measured the time to run the compiler
benchmark. The optimizations we had implemented
improved single-core performance as well as the other
cases.

Much, though not all of the mystery had been solved: After
fixing these two problems, the two-core vs. one-core ratio
improved from about a factor of 3 to a factor of 1.7:

1 core

2 cores

56 cores

Before
After

Before
After

Before
After

0 ms 1500 ms 3000 ms
Figure 13. Effect of using huge pages and eliminating

 ioMsec calls

Returning to the TILE64 simulator, we took another look at
stalls given our optimizations. (See Figure 14.) The three
greatest sources of stalls for our current two-core system
were L2 data, L1 instruction, and L2 instruction (TLB

106

miss, Napping and L2 busy stalls were insignificant and
thus elided from the chart). At this point, we could have
gone after L1 instruction stalls, but those were not relevant
to the extra cores. Instead, it was the L2 data stalls which
increased the most with the addition of a second core:

Figure 14. Stalls before and after

1 core before

1 core after

2 core before

2 core after

0 100 200 300 400 500 600

M Stalls

L1 D
L1 I
L2 D
L2 I
Pipeline
Branches

The simulator had pointed us to fetching bytecodes out of
methods as a prime cause of these stalls. Since Smalltalk
method objects are immutable, we started wondering if
there were not some way to allow the hardware to replicate
these and other immutable or even rarely-written objects
(e.g. classes) among the cores as needed. It was time to
tackle the previously deferred issues.

5.5. The Read-Mostly Heap
Many systems contain objects that are read far more
frequently than written. In Smalltalk/Squeak, the currently
executing method is read for every bytecode and literal
interpreted, but it is never written; the class of a message
receiver is read for every method lookup, but only written
when a class-instance variable is changed (class
modifications are performed with a copy-on-write scheme);
and a class’s method dictionary is read for every method
lookup, but only changed when a method is added,
modified, or removed. In addition, many application-level
objects exhibit periods in which reads vastly outnumber
writes. For instance, a Smalltalk Point object has its x and y
variables set upon initialization and is almost never
mutated thereafter.

Replication can save time if the read frequency far exceeds
the write frequency. Although the default caching regime
for user data on the TILE64 platform maintains coherency
by confining the set of cores that may cache a line to a
single core, there is an alternative: a user-managed regime.
When a page is operating under this regime, any cache line
may be cached on as many cores as needed. However,
unlike a processor with a handful of cores providing
memory coherence in hardware, the time savings accrued

when reading data residing in a local cache must be paid
for with a substantial increase in the time required to
modify the data. In order to modify a user-managed cache
line, the application must first force every other core to
invalidate any cached copies of the data, then must write
the data, and finally must force the cache line out to main
memory before any other core attempts to read the data.
Consequently, the user-managed memory policy optimizes
reads at a great cost in both time and complexity for writes.
Tables 2 and 3 compare read and write operations for the
two regimes.

5.5.1. Read-Only, or Read-Mostly
If write operations are to be expensive and complicated,
perhaps only immutable objects such as compiled methods
should be placed in user-managed memory. Such a design
would simplify our system at the cost of missing
opportunities to replicate other objects such as classes and
method dictionaries. If our system were to allow these
read-mostly objects to occupy user-managed memory, a
store barrier would be required in order to instruct the other
cores to invalidate a line before a given core performed a
store to it. A decision had to made that would trade off
performance against simplicity.

read

write

user-managed regime

2 cycles if in L1, 8 cycles if in L2

1. other tiles must invalidate the cache line,
2. storing tile stores the data,
3. storing tile flushes the line,
4. storing tile and performs a fence operation

Table 2. The TILE64 User-Managed Regime

read-wriite regimeread-wriite regimeread-wriite regime

home time non-home tile

read

write

2 cycles if in L1,
8 cycles if in L2

~ 40 cycles if in home L2,
~ 80 cycles if in memory

hardware does it hardware does it

Table 3. The TILE64 Read-Write Regime

Sometimes it’s easy; we discovered that even without a
store barrier, the compiler benchmark would run with all
(non-context) objects placed in read-mostly memory, a
fortuitous and fortunate happenstance that perhaps sheds
light on the difference between benchmarks and real
workloads. So, we performed a quick-and-dirty
experiment: We ran the benchmark on one, two, and 56
cores, with no replication (all objects in read-write
memory), method-only replication, and universal
replication:

107

Figure 15. Quick & Dirty Experiments / no coherence code

no replication

repl. methods

repl. all but contexts

0 200 400 600 800

Gigacycles

1 core
2 cores
56 cores

T h e
first set of bars shows the system without replication: The
two core configuration was perhaps 1.5 times slower than
the single-core, and the 56 core configuration is between
two and three times slower. The second set of bars showed
the results for employing the user-managed policy for
methods only: Surprisingly, there was little improvement.
Applying the user-managed policy to all objects showed
much better scalability. This experiment convinced us to
shoulder the burden of a store barrier in order to apply the
user-managed regime to such read-mostly objects.

5.5.2. Incorporating User-Managed Memory
Our first design to incorporate user-managed memory
added another heap, dubbed the “read-mostly heap” to our
memory system:1

Read-

Mostly

Heap
Object

Heap

Object

Heap

R/W Heap

addr

OBJ

OOP

Bytecode

Interpreter

Bytecode

Interpreter

Object

Table
Bytecode

Interpreter

one/core one/coreglobal

OBJ

REF

OOP

OBJ

addr

cached

addr

global

... ...

Figure 16. Adding a global read-mostly heap

A store barrier intercepts writes to objects and performs the
extra work to ensure coherence if the object resides in this
read-mostly heap. For virtual-machine-level operations that
modify objects in bulk, such as garbage collection, the
extra coherency-preserving work is performed once for the
whole read-mostly heap. This mechanism would have been
more difficult had we also been tackling application-level
multithreading: What happens if every core decides to
simultaneously ask every other core to invalidate a cache
line? That question is reserved for the future.

With this addition of the read-mostly heap the baton-
passing algorithm became slightly more elaborate: If the
receiver of a message-send is in the read-mostly heap, the

baton need never be passed, since any core is as good as
any other.

Our design had to include policies and mechanisms to
attempt to put the appropriate objects in the read-mostly
heap. New objects and contexts were assumed to exhibit a
high mutation frequency for initialization and
interpretation, and were thus allocated in the read-write
heap. In fact, contexts were never allowed in the read-
mostly heap.

Upon performing a store into any object residing in the
read-mostly heap, the virtual machine would move the
object to the read-write heap in order to forestall
catastrophic performance degradation in case a series of
stores were about to be performed on that object.

As it seemed too burdensome to automatically discover
objects that had not been modified for a while, the
responsibility for moving a new object into the read-mostly
heap was placed on the application by providing primitive
operations that would move either one or all (non-context)
objects to the read-mostly heap. We assumed that the
application code would periodically move everything to the
read-mostly heap and let the virtual machine weed out the
mutations, and/or initialization methods would be
augmented to move the newly initialized instance into the
read-mostly heap. An object read from the snapshot was
assumed to be stable and placed into the read-mostly heap
(see figure 17).

When we measured this system, the numbers looked too
good—the dual core time was only 1.1 times as slow as the
single core—and we realized that the baton was almost
never getting passed! Since most objects were in the single
read-mostly heap there was rarely a need to move the
mutator thread. This problem was remedied by splitting up
the global read-mostly heap into per-core pieces (powers of
two in size) so that, even though it made no difference to
the hardware, our system could use an object’s address as a
means to indicate which core should run the interpreter
when sending a message to that object. In addition, we
added a per-object flag to disable baton-passing in order to
retain the older behavior when desired. Figure 18 shows the
revised baton-passing algorithm, where “wants baton”
means “does not have the don’t-pass bit set.”

1 Actually, we initially named this heap the “incoherent” heap, but nobody understood what we were talking about. Our thanks go to David
Bacon for pointing out the obscurity of that nomenclature.

108

Read-Mostly

Heap

R/W Heap
1. New object

allocated where

thread is running

on core 5

OBJ

core 5

OBJ

global

2. Application

decides object is

stable and moves to

read-mostly heap.

Or, old object read

from snapshot is

assumed stable and

put in read-mostly

heap.

1

2

R/W Heap

core 27

3. Later, VM moves

thread to core 27

and attempts to

mutate the object

OBJ

4. VM moves the

object to core 27 when

mutated and leaves it

there assuming more

mutation to come

3

4

5. Later, application

decides object is

stable and moves to

read-mostly heap

Figure 17. Heap local lifecycle

call or return

Is receiver a

SmallInteger?

move thread to

receiver's core
continue on this core

yes

no

Receiver wants

baton? yes

no

Is receiver read-

mostly?

force

yields?

move thread somewhere else

yes

yes

no

no

Figure 18. Final baton passing algorithm

Conclusions and Future Work
In adapting a large, centralized heap of many small objects
to a collection of heaps distributed over a multiplicity of
medium-sized caches, our design evolved in stages.
Starting with a reference implementation, we

• introduced distinct types for references vs. addresses,

• shared the address space across all cores to facilitate
inter-core object references,

• added an object table to support object migration,

• used ordinary objects for activation records to facilitate
thread migration,

• separated the global object heap into per-core heaps,

• enforced locality for receiver and activation record
access by passing the baton to the receiver’s core when
invoking a virtual function and by allocating the
activation record on the same core as the receiver,

• added a global heap with user-managed caching in order
to replicate read-mostly objects,

• implemented a store barrier in order to maintain
coherence for the read-mostly heap, and

• separated the global read-mostly heaps into per-core
heaps.

Each stage ideally followed a sequence of design and
implementation, measurement, interpretation and
evaluation, optimization, and again, measurement. Even
without parallel workloads, efficiency has been a challenge
at every stage. Because the overall goal of the project was
the programming model, and given budget constraints, we
did not get every answer we wanted before moving on.

What lessons can we learn? One obvious but important
lesson is that manycore systems are very different
platforms, offering far faster communication than
distributed systems, far smaller caches and TLBs than
modern few-core systems, easier address-space sharing
than distributed systems, but more problematic cache
coherency than few-core systems. This last issue is widely
recognized as a major challenge in designing and
exploiting manycore architectures. For example, Tilera
further addresses cache coherency in their second-
generation chip, the TILEPro64 [22].

With a manycore hardware architecture, the virtual
machine designer faces different trade-offs than with
traditional architectures. For example, migrating objects to
achieve locality takes less time than on a distributed
system, yet saves much more time than on a few-core
system. We observed a bit of this difference when we
implemented the read-mostly heap and allowed many
objects to be not only migrated to where they were needed,
but replicated as well.

109

Now that we have a stable manycore object memory
model, our focus has shifted to implementing application-
level multithreading to complete our experimental platform
for prototyping programming paradigms and concepts. We
will revisit optimization when our system is running
parallel workloads.

Acknowledgements
The authors would like to thank our IBM colleagues Mark
Wegman, Erik Altman, Michael Hind, David Bacon and
David Grove for many insightful contributions to this
effort; the Squeak community for its passionate
advancement and preservation of the original Smalltalk
IDE; Leo Ungar for his editing; and Richard Schooler, VP
SW Engineering at Tilera, and his team for their excellent
support during this project.

References
1. IBM, “The IBM® Blue Gene®/P Solution,” 2009;

http://www-03.ibm.com/systems/deepcomputing/
bluegene/.

2. IBM, “IBM Cell Broadband Engine technology,” 2009;
http://www-03.ibm.com/technology/cell/index.html.

3. Tilera Corp., “Tilera,” 2009; http://www.tilera.com.
4. Squeak.org, “Squeak,” 2009; http://squeak.org/.
5. J. Pallas and D. Ungar, “Multiprocessor Smalltalk: a

case study of a multiprocessor-based programming
environment,” PLDI, 1988.

6. J.I. Pallas, “Multiprocessor Smalltalk: implementation,
performance, and analysis,” Computer Science,
Stanford University, Stanford, CA, 1990.

7. C.P. Thacker and L.C. Stewart, “Firefly: A
multiprocessor workstation,” ASPLOS II, 1987.

8. D.M. Ungar and D.A. Patterson, “Berkeley Smalltalk:
Who knows where the time goes?,” Smalltalk-80:
History, Words of Advice, G. Krasner, ed., Addison-
Wesley, 1983, pp. 189-206.

9. D. Ungar, “Generation Scavenging: A non-disruptive
high performance storage reclamation algorithm,”
Software Engineering Symposium on Practical
Software Development Environments, 1984.

10. D.M. Ungar, The Design and Evaluation of a High
Performance Smalltalk System, MIT Press, 1987, p.
250.

11. MIT Artificial Intelligence Laboratory, “The Jellybean
Machine,” 1998; http://cva.stanford.edu/projects/j-
machine/.

12. W. Horvat, Concurrent Smalltalk on the Message-
Driven Processor, MIT Computer Science and
Artificial Intelligence Lab, 1991; http://dspace.mit.edu/
handle/1721.1/7090.

13. I. Williams, “The Mushroom Machine - An
Architecture for Symbolic Processing,” IEE
Colloquium on VLSI and Architectures for Symbolic
Processing, 1989.

14. M. Wolczko and I. Williams, “The influence of the
object-oriented language model on a supporting
architecture,” 26th Hawaii Conference on System
Science, 1994.

15. I. Williams and M. Wolczko, “An Object-Based
Memory Architecture,” Fourth International Workshop
on Persistent Object Systems, 1991.

16. J. Stokes, “MIT startup raises multicore bar with new
64-core CPU,” 2007.

17. Tilera Corp., Multicore Development Environment -
Product Brief, T. Corp., 2008; http://tilera.com/pdf/
ProductBrief_MDE_Web_v2.pdf.

18. D. Ingalls, et al., “Back to the future: The story of
Squeak, A practical Smalltalk written in itself,”
OOPSLA, 1997; http://www.vpri.org/pdf/
backto_TR-1997-001.pdf.

19. T. Reenskaug, “The Model-View-Controller (MVC). Its
Past and Present,” JAOO, 2003; http://heim.ifi.uio.no/
~trygver/2003/javazone-jaoo/MVC_pattern.pdf.

20. T. Reenskaug, MODELS - VIEWS - CONTROLLERS,
1979; http://folk.uio.no/trygver/1979/mvc-2/1979-12-
MVC.pdf.

21. T. Reenskaug, “MVC Xerox PARC 1978-79,” Trygve/
MVC.

22. Tilera Corp., TileraPro64 Processor - Product Brief, T.
Corp., 2008; http://tilera.com/pdf/
ProductBrief_TILEPro64_Web_v2.pdf.

110

