Tag Archives: Java

Language Research with Truffle at the SPLASH’16 Conference

Next weekend starts one of the major conferences of the programming languages research community. The conference hosts many events including our Meta’16 workshop on Metaprogramming, SPLASH-I with research and industry talks, the Dynamic Languages Symposium, and the OOPSLA research track.

This year, the overall program includes 9 talks on Truffle and Graal-related topics. This includes various topics including optimizing high-level metaprogramming, low-level machine code, benchmarking, parallel programming. I posted a full list including abstracts here: Truffle and Graal Presentations @SPLASH’16. Below is an overview and links to the talks:

Sunday, Oct. 30th

AST Specialisation and Partial Evaluation for Easy High-Performance Metaprogramming (PDF)
Chris Seaton, Oracle Labs
Meta’16 workshop 11:30-12:00

Towards Advanced Debugging Support for Actor Languages: Studying Concurrency Bugs in Actor-based Programs (PDF)
Carmen Torres Lopez, Stefan Marr, Hanspeter Moessenboeck, Elisa Gonzalez Boix
Agere’16 workshop 14:10-14:30

Monday, Oct. 31st

Bringing Low-Level Languages to the JVM: Efficient Execution of LLVM IR on Truffle (PDF)
Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas Würthinger, Hanspeter Mössenböck
VMIL’16 workshop 15:40-16:05

Tuesday, Nov. 1st

Building Efficient and Highly Run-time Adaptable Virtual Machines (PDF)
Guido Chari, Diego Garbervetsky, Stefan Marr
DLS 13:55-14:20

Optimizing R Language Execution via Aggressive Speculation
Lukas Stadler, Adam Welc, Christian Humer, Mick Jordan
DLS 14:45-15:10

Cross-Language Compiler Benchmarking—Are We Fast Yet? (PDF)
Stefan Marr, Benoit Daloze, Hanspeter Mössenböck
DLS 16:30-16:55

Thursday, Nov. 3rd

GEMs: Shared-memory Parallel Programming for Node.js (DOI)
Daniele Bonetta, Luca Salucci, Stefan Marr, Walter Binder
OOPSLA conference 11:20-11:45

Efficient and Thread-Safe Objects for Dynamically-Typed Languages (PDF)
Benoit Daloze, Stefan Marr, Daniele Bonetta, Hanspeter Mössenböck
OOPSLA conference 13:30-13:55

Truffle and Graal: Fast Programming Languages With Modest Effort
Chris Seaton, Oracle Labs
SPLASH-I 14:20-15:10

Fork/Join Parallelism in the Wild: Documenting Patterns and Anti-Patterns in Java Programs using the Fork/Join Framework

Parallel programming is frequently claimed to be hard and all kind of approaches have been proposed to solve the complexity issues. The Fork/Join programming style introduced with Cilk enables the parallel decomposition of problems in a recursive divide-and-conquer style, and on the surface looks very simple with its minimalistic approach of having a fork and a join language construct. But is it actually simple to use? To find out, Mattias started to dig through the Java open source projects on GitHub and tried to identify common patterns. Next week, he will present our findings at PPPJ’14.

The preprint of the paper is available below. Additionally, Mattias made the information on the corpus and how to obtain it available.

Abstract

Now that multicore processors are commonplace, developing parallel software has escaped the confines of high-performance computing and enters the mainstream. The Fork/Join framework, for instance, is part of the standard Java platform since version 7. Fork/Join is a high-level parallel programming model advocated to make parallelizing recursive divide-and-conquer algorithms particularly easy. While, in theory, Fork/Join is a simple and effective technique to expose parallelism in applications, it has not been investigated before whether and how the technique is applied in practice. We therefore performed an empirical study on a corpus of 120 open source Java projects that use the framework for roughly 362 different tasks.

On the one hand, we confirm the frequent use of four best-practice patterns (Sequential Cutoff, Linked Subtasks, Leaf Tasks, and avoiding unnecessary forking) in actual projects. On the other hand, we also discovered three recurring anti-patterns that potentially limit parallel performance: sub-optimal use of Java collections when splitting tasks into subtasks as well as when merging the results of subtasks, and finally the inappropriate sharing of resources between tasks. We document these anti-patterns and study their impact on performance.

  • Fork/Join Parallelism in the Wild: Documenting Patterns and Anti-Patterns in Java Programs using the Fork/Join Framework; Mattias De Wael, Stefan Marr, Tom Van Cutsem; in ‘Proceedings of the 2014 International Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools’ , pp. 39-50.
  • Paper: PDF
  • BibTex: BibSonomy
  • Corpus and additional material: online appendix