Apr 28, 2015: Zero-Overhead Metaprogramming
Runtime metaprogramming and reflection are slow. That’s a common wisdom. Unfortunately. Using refection for instance with Java’s reflection API, its dynamic proxies, Ruby’s #send or #method_missing, PHP’s magic methods such as __call, Python’s __getattr__, C#’s DynamicObjects, or really any metaprogramming abstraction in modern languages unfortunately comes at a price. The fewest language implementations optimize these operations. For instance, on Java’s HotSpot VM, reflective method invocation and dynamic proxies have an overhead of 6-7x compared to direct operations.
Feb 10, 2014: OMOP Ported to Opal on top of Pharo 3
To prepare some experiments with Pharo’s new compiler infrastructure and a simple AST interpreter, I ported my implementation of the Ownership-based Metaobject Protocol (OMOP) to the Pharo 3. Loading the OMOP into an image will give you an STM implementation, a basic actor system, communicating sequential processes, Clojure-like agents, and active objects. Eventually, the goal is to provide a more extensive set of such concurrent programming mechanisms on top of the OMOP, but for now these five should already give an impression of how the OMOP itself works.
My paper, on how to support various concurrency models, with an ownership-based meta-object protocol (MOP) was accepted at TOOLS’12. Below, you will find a preprint version of the paper. A later post will provide details on how to use it and how to experiment with the MOP in Pharo 1.3.